Jump to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2266 publications. Showing page 1 of 227:

Publication  
Year  
Category

Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia

Zamora, Lauren M; Kahn, Ralph A.; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Huebert, Klaus B

Aerosol distributions have a potentially large influence on climate-relevant cloud properties but can be difficult to observe over the Arctic given pervasive cloudiness, long polar nights, data paucity over remote regions, and periodic diamond dust events that satellites can misclassify as aerosol. We compared Arctic 2008–2015 mineral dust and combustion aerosol distributions from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis products, and the FLEXible PARTicle (FLEXPART) dispersion model. Based on coincident, seasonal Atmospheric Infrared Sounder (AIRS) Arctic satellite meteorological data, diamond dust may occur up to 60 % of the time in winter, but it hardly ever occurs in summer. In its absence, MERRA-2 and FLEXPART each predict the vertical and horizontal distribution of large-scale patterns in combustion aerosols with relatively high confidence (Kendall tau rank correlation > 0.6), although a sizable amount of variability is still unaccounted for. They do the same for dust, except in conditions conducive to diamond dust formation where CALIPSO is likely misclassifying diamond dust as mineral dust and near the surface...

2022

The colony forming efficiency assay for toxicity testing of nanomaterials – Modifications for higher-throughput

Rundén-Pran, Elise; Mariussen, Espen; El Yamani, Naouale; Elje, Elisabeth; Longhin, Eleonora Marta

To cope with the high number of nanomaterials manufactured, it is essential to develop high-throughput methods for in vitro toxicity screening. At the same time, the issue with interference of the nanomaterial (NM) with the read-out or the reagent of the assay needs to be addressed to avoid biased results. Thus, validated label-free methods are urgently needed for hazard identification of NMs to avoid unintended adverse effects on human health. The colony forming efficiency (CFE) assay is a label- and interference-free method for quantification of cytotoxicity by cell survival and colony forming efficiency by CFE formation. The CFE has shown to be compatible with toxicity testing of NMs. Here we present an optimized protocol for a higher-throughput set up.

Frontiers Media S.A.

2022

Differences in Trophic Level, Contaminant Load, and DNA Damage in an Urban and a Remote Herring Gull (Larus argentatus) Breeding Colony in Coastal Norway

Keilen, Ellen Kristine; Borgå, Katrine; Thorstensen, Helene Skjeie; Hylland, Ketil; Helberg, Morten; Warner, Nicholas Alexander; Bæk, Kine; Reiertsen, Tone Kristin; Ruus, Anders

Herring gulls (Larus argentatus) are opportunistic feeders, resulting in contaminant exposure depending on area and habitat. We compared contaminant concentrations and dietary markers between two herring gull breeding colonies with different distances to extensive human activity and presumed contaminant exposure from the local marine diet. Furthermore, we investigated the integrity of DNA in white blood cells and sensitivity to oxidative stress. We analyzed blood from 15 herring gulls from each colony—the urban Oslofjord near the Norwegian capital Oslo in the temperate region and the remote Hornøya island in northern Norway, on the Barents Sea coast. Based on d13C and d34S, the dietary sources of urban gulls differed, with some individuals having a marine and others a more terrestrial dietary signal. All remote gulls had a marine dietary signal and higher relative trophic level than the urban marine feeding gulls. Concentrations (mean ± standard deviation [SD]) of most persistent organic pollutants, such as polychlorinated biphenyl ethers (PCBs) and perfluorooctane sulfonic acid (PFOS), were higher in urban marine (PCB153 17 ± 17 ng/g wet weight, PFOS 25 ± 21 ng/g wet wt) than urban terrestrial feeders (PCB153 3.7 ± 2.4 ng/g wet wt, PFOS 6.7 ± 10 ng/g wet wt). Despite feeding at a higher trophic level (d15N), the remote gulls (PCB153 17 ± 1221 ng/g wet wt, PFOS 19 ± 1421 ng/g wet wt) were similar to the urban marine feeders. Cyclic volatile methyl siloxanes were detected in only a few gulls, except for decamethylcyclopentasiloxane in the urban colony, which was found in 12 of 13 gulls. Only hexachlorobenzene was present in higher concentrations in the remote (2.6 ± 0.42 ng/g wet wt) compared with the urban colony (0.34 ± 0.33 ng/g wet wt). Baseline and induced DNA damage (doublestreak breaks) was higher in urban than in remote gulls for both terrestrial and marine feeders.

Pergamon Press

2022

Springtime nitrogen oxides and tropospheric ozone in Svalbard: results from the measurement station network

Dekhtyareva, Alena; Hermanson, Mark H.; NIkulina, Anna; Hermansen, Ove; Svendby, Tove Marit; Holmén, Kim; Graversen, Rune Grand

Svalbard is a remote and scarcely populated Arctic archipelago and is considered to be mostly influenced by long-range-transported air pollution. However, there are also local emission sources such as coal and diesel power plants, snowmobiles and ships, but their influence on the background concentrations of trace gases has not been thoroughly assessed. This study is based on data of tropospheric ozone (O3) and nitrogen oxides (NOx) collected in three main Svalbard settlements in spring 2017. In addition to these ground-based observations and radiosonde and O3 sonde soundings, ERA5 reanalysis and BrO satellite data have been applied in order to distinguish the impact of local and synoptic-scale conditions on the NOx and O3 chemistry. The measurement campaign was divided into several sub-periods based on the prevailing large-scale weather regimes. The local wind direction at the stations depended on the large-scale conditions but was modified due to complex topography. The NOx concentration showed weak correlation for the different stations and depended strongly on the wind direction and atmospheric stability. Conversely, the O3 concentration was highly correlated among the different measurement sites and was controlled by the long-range atmospheric transport to Svalbard. Lagrangian backward trajectories have been used to examine the origin and path of the air masses during the campaign.

2022

Population pharmacokinetic modeling of CSF to blood clearance: prospective tracer study of 161 patients under work-up for CSF disorders

Hovd, Markus Herberg; Mariussen, Espen; Uggerud, Hilde Thelle; Lashkarivand, Aslan; Christensen, Hege; Ringstad, Geir; Eide, Per Kristian

Background
Quantitative measurements of cerebrospinal fluid to blood clearance has previously not been established for neurological diseases. Possibly, variability in cerebrospinal fluid clearance may affect the underlying disease process and may possibly be a source of under- or over-dosage of intrathecally administered drugs. The aim of this study was to characterize the cerebrospinal fluid to blood clearance of the intrathecally administered magnetic resonance imaging contrast agent gadobutrol (Gadovist, Bayer Pharma AG, GE). For this, we established a population pharmacokinetic model, hypothesizing that cerebrospinal fluid to blood clearance differs between cerebrospinal fluid diseases.

Methods
Gadobutrol served as a surrogate tracer for extra-vascular pathways taken by several brain metabolites and drugs in cerebrospinal fluid. We estimated cerebrospinal fluid to blood clearance in patients with different cerebrospinal fluid disorders, i.e. symptomatic pineal and arachnoid cysts, as well as tentative spontaneous intracranial hypotension due to cerebrospinal fluid leakage, idiopathic intracranial hypertension, or different types of hydrocephalus (idiopathic normal pressure hydrocephalus, communicating- and non-communicating hydrocephalus). Individuals with no verified cerebrospinal fluid disturbance at clinical work-up were denoted references.

Results
Population pharmacokinetic modelling based on 1,140 blood samples from 161 individuals revealed marked inter-individual variability in pharmacokinetic profiles, including differences in absorption half-life (time to 50% of tracer absorbed from cerebrospinal fluid to blood), time to maximum concentration in blood and the maximum concentration in blood as well as the area under the plasma concentration time curve from zero to infinity. In addition, the different disease categories of cerebrospinal fluid diseases demonstrated different profiles.

Conclusions
The present observations of considerable variation in cerebrospinal fluid to blood clearance between individuals in general and across neurological diseases, may suggest that defining cerebrospinal fluid to blood clearance can become a useful diagnostic adjunct for work-up of cerebrospinal fluid disorders. We also suggest that it may become useful for assessing clearance capacity of endogenous brain metabolites from cerebrospinal fluid, as well as measuring individual cerebrospinal fluid to blood clearance of intrathecal drugs.

2022

Potential environmental impact of bromoform from Asparagopsis farming in Australia

Jia, Yue; Quack, Birgit; Kinley, Robert D.; Pisso, Ignacio; Tegtmeier, Susann

To mitigate the rumen enteric methane (CH4) produced by ruminant livestock, Asparagopsis taxiformis is proposed as an additive to ruminant feed. During the cultivation of Asparagopsis taxiformis in the sea or in terrestrially based systems, this macroalgae, like most seaweeds and phytoplankton, produces a large amount of bromoform (CHBr3), which contributes to ozone depletion once released into the atmosphere. In this study, we focus on the impact of CHBr3 on the stratospheric ozone layer resulting from potential emissions from proposed Asparagopsis cultivation in Australia. The impact is assessed by weighting the emissions of CHBr3 with its ozone depletion potential (ODP), which is traditionally defined for long-lived halocarbons but has also been applied to very short-lived substances (VSLSs). An annual yield of ∼3.5 × 104 Mg dry weight is required to meet the needs of 50 % of the beef feedlot and dairy cattle in Australia. Our study shows that the intensity and impact of CHBr3 emissions vary, depending on location and cultivation scenarios. Of the proposed locations, tropical farms near the Darwin region are associated with the largest CHBr3 ODP values. However, farming of Asparagopsis using either ocean or terrestrial cultivation systems at any of the proposed locations does not have the potential to significantly impact the ozone layer. Even if all Asparagopsis farming were performed in Darwin, the CHBr3 emitted into the atmosphere would amount to less than 0.02 % of the global ODP-weighted emissions. The impact of remaining farming scenarios is also relatively small even if the intended annual yield in Darwin is scaled by a factor of 30 to meet the global requirements, which will increase the global ODP-weighted emissions up to ∼0.5 %.

2022

Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study

Whaley, Cynthia; Mahmood, Rashed; von Salzen, Knut; Winter, Barbara; Eckhardt, Sabine; Arnold, Stephen R.; Beagley, Stephen; Becagli, Silvia; Chien, Rong-You; Christensen, Jesper; Damani, Sujay Manish; Dong, Xinyi; Eleftheriadis, Konstantinos; Evangeliou, Nikolaos; Faluvegi, Gregory; Flanner, Mark G.; Fu, Joshua S.; Gauss, Michael; Giardi, Fabio; Gong, Wanmin; Hjorth, Jens Liengaard; Huang, Lin; Im, Ulas; Kanaya, Yugo; Srinath, Krishnan; Klimont, Zbigniew; Kuhn, Thomas; Langner, Joakim; Law, Kathy S.; Marelle, Louis; Massling, Andreas; Oliviè, Dirk Jan Leo; Onishi, Tatsuo; Oshima, Naga; Peng, Yiran; Plummer, David A.; Pozzoli, Luca; Popovicheva, Olga; Raut, Jean-Christophe; Sand, Maria; Saunders, Laura; Schmale, Julia; Sharma, Sangeeta; Skeie, Ragnhild Bieltvedt; Skov, Henrik; Taketani, Fumikazu; Thomas, Manu Anna; Traversi, Rita; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T; Vitale, Vito; Walker, Kaley A.; Wang, Minqi; Watson-Parris, Duncan; Weiss-Gibbons, Tahya

While carbon dioxide is the main cause for global warming, modeling short-lived climate forcers (SLCFs) such as methane, ozone, and particles in the Arctic allows us to simulate near-term climate and health impacts for a sensitive, pristine region that is warming at 3 times the global rate. Atmospheric modeling is critical for understanding the long-range transport of pollutants to the Arctic, as well as the abundance and distribution of SLCFs throughout the Arctic atmosphere. Modeling is also used as a tool to determine SLCF impacts on climate and health in the present and in future emissions scenarios.

In this study, we evaluate 18 state-of-the-art atmospheric and Earth system models by assessing their representation of Arctic and Northern Hemisphere atmospheric SLCF distributions, considering a wide range of different chemical species (methane, tropospheric ozone and its precursors, black carbon, sulfate, organic aerosol, and particulate matter) and multiple observational datasets. Model simulations over 4 years (2008–2009 and 2014–2015) conducted for the 2022 Arctic Monitoring and Assessment Programme (AMAP) SLCF assessment report are thoroughly evaluated against satellite, ground, ship, and aircraft-based observations. The annual means, seasonal cycles, and 3-D distributions of SLCFs were evaluated using several metrics, such as absolute and percent model biases and correlation coefficients. The results show a large range in model performance, with no one particular model or model type performing well for all regions and all SLCF species. The multi-model mean (mmm) was able to represent the general features of SLCFs in the Arctic and had the best overall performance. For the SLCFs with the greatest radiative impact (CH4, O3, BC, and SO), the mmm was within ±25 % of the measurements across the Northern Hemisphere. Therefore, we recommend a multi-model ensemble be used for simulating climate and health impacts of SLCFs.

Of the SLCFs in our study, model biases were smallest for CH4 and greatest for OA. For most SLCFs, model biases skewed from positive to negative with increasing latitude. Our analysis suggests that vertical mixing, long-range transport, deposition, and wildfires remain highly uncertain processes. These processes need better representation within atmospheric models to improve their simulation of SLCFs in the Arctic environment. As model development proceeds in these areas, we highly recommend that the vertical and 3-D distribution of SLCFs be evaluated, as that information is critical to improving the uncertain processes in models.

2022

Siberian Arctic black carbon: gas flaring and wildfire impact

Popovicheva, Olga; Evangeliou, Nikolaos; Kobelev, Vasily O.; Chichaeva, M. A.; Eleftheriadis, Konstantinos; Gregorič, Asta; Kasimov, Nikolay

As explained in the latest Arctic Monitoring and Assessment Programme (AMAP) report released in early 2021, the Arctic has warmed 3 times more quickly than the planet as a whole, as well as faster than previously thought. The Siberian Arctic is of great interest mainly because observations are sparse or largely lacking. A research aerosol station has been developed on Bely Island (Kara Sea) in western Siberia. Measurements of equivalent black carbon (EBC) concentrations were carried out at the “Island Bely” station continuously from August 2019 to November 2020. The source origin of the measured EBC and the main contributing sources were assessed using atmospheric transport modeling coupled with the most updated emission inventories for anthropogenic and biomass burning sources of BC.

The obtained climatology for BC during the period of measurements showed an apparent seasonal variation with the highest concentrations between December and April (60 ± 92 ng m−3) and the lowest between June and September (18 ± 72 ng m−3), typical of the Arctic haze seasonality reported elsewhere. When air masses arrived at the station through the biggest oil and gas extraction regions of Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia, BC contribution from gas flaring dominated over domestic, industrial and traffic sectors, ranging from 47 % to 68 %, with a maximum contribution in January. When air was transported from Europe during the cold season, emissions from transportation were more important. Accordingly, shipping emissions increased due to the touristic cruise activities and the ice retreat in summertime. Biomass burning (BB) played the biggest role between April and October, contributing 81 % at maximum in July. Long-range transport of BB aerosols appeared to induce large variability to the absorption Ångström exponent (AAE) with values > 1.0 (excluding outliers). As regards the continental contribution to surface BC at the Island Bely station, Russian emissions dominated during the whole year, while European and Asian ones contributed up to 20 % in the cold period. Quantification of several pollution episodes showed an increasing trend in surface concentrations and frequency during the cold period as the station is directly in the Siberian gateway of the highest anthropogenic pollution sources to the Russian Arctic.

2022

Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions

Deng, Zhu; Ciais, Philippe; Tzompa-Sosa, Zitely A.; Saunois, Marielle; Qiu, Chunjing; Tan, Chang; Sun, Taochun; Ke, Piyu; Cui, Yanan; Tanaka, Katsumasa; Lin, Xin; Thompson, Rona Louise; Tian, Hanqin; Yao, Yuanzhi; Huang, Yuanyuan; Lauerwald, Ronny; Jain, Atul K.; Xu, Xiaoming; Bastos, Ana; Palmer, Paul I.; Lauvaux, Thomas; d'Aspremont, Alexandre; Giron, Clément; Benoit, Antoine; Poulter, Benjamin; Chang, Jinfeng; Petrescu, Ana Maria Roxana; Davis, Steven J; Liu, Zhu; Grassi, Giacomo; Albergel, Clement; Tubiello, Francesco N. ; Perugini, Lucia; Peters, Wouter; Chevallier, Frederic

In support of the global stocktake of the Paris Agreement on climate change, this study presents a comprehensive framework to process the results of an ensemble of atmospheric inversions in order to make their net ecosystem exchange (NEE) carbon dioxide (CO2) flux suitable for evaluating national greenhouse gas inventories (NGHGIs) submitted by countries to the United Nations Framework Convention on Climate Change (UNFCCC). From inversions we also deduced anthropogenic methane (CH4) emissions regrouped into fossil and agriculture and waste emissions, as well as anthropogenic nitrous oxide (N2O) emissions. To compare inversion results with national reports, we compiled a new global harmonized database of emissions and removals from periodical UNFCCC inventories by Annex I countries, and from sporadic and less detailed emissions reports by non-Annex I countries, given by national communications and biennial update reports. No gap filling was applied. The method to reconcile inversions with inventories is applied to selected large countries covering ∼90 % of the global land carbon uptake for CO2 and top emitters of CH4 and N2O. Our method uses results from an ensemble of global inversions produced by the Global Carbon Project for the three greenhouse gases, with ancillary data. We examine the role of CO2 fluxes caused by lateral transfer processes from rivers and from trade in crop and wood products and the role of carbon uptake in unmanaged lands, both not accounted for by NGHGIs. Here we show that, despite a large spread across the inversions, the median of available inversion models points to a larger terrestrial carbon sink than inventories over temperate countries or groups of countries of the Northern Hemisphere like Russia, Canada and the European Union. For CH4, we find good consistency between the inversions assimilating only data from the global in situ network and those using satellite CH4 retrievals and a tendency for inversions to diagnose higher CH4 emission estimates than reported by NGHGIs. In particular, oil- and gas-extracting countries in central Asia and the Persian Gulf region tend to systematically report lower emissions compared to those estimated by inversions. For N2O, inversions tend to produce higher anthropogenic emissions than inventories for tropical countries, even when attempting to consider only managed land emissions. In the inventories of many non-Annex I countries, this can be tentatively attributed to a lack of reporting indirect N2O emissions from atmospheric deposition and from leaching to rivers, to the existence of natural sources intertwined with managed lands, or to an underestimation of N2O emission factors for direct agricultural soil emissions. Inversions provide insights into seasonal and interannual greenhouse gas fluxes anomalies, e.g., during extreme events such as drought or abnormal fire episodes, whereas inventory methods are established to estimate trends and multi-annual changes. As a much denser sampling of atmospheric CO2 and CH4 concentrations by different satellites coordinated into a global constellation is expected in the coming years, the methodology proposed here to compare inversion results with inventory reports (e.g., NGHGIs) could be applied regularly for monitoring the effectiveness of mitigation policy and progress by countries to meet the objective of their pledges. The dataset constructed by this study is publicly available at https://doi.org/10.5281/zenodo.5089799 (Deng et al., 2021).

2022

A pooled analysis of molecular epidemiological studies on modulation of DNA repair by host factors

Opattová, Alena; Langie, Sabine A.S.; Milic, Mirta; Collins, Andrew Richard; Brevik, Asgeir; Dusinska, Maria; Coskun, Erdem; Gaivao, Isabel; Kadioglu, Ela; Laffon, Blanca; Marcos, Ricard; Pastor, Susana; Slyskova, Jana; Smolkova, Bozena ; Szilagyi, Zsofia; Valdiglesias, Vanessa; Vodicka, Pavel; Volkovova, Katarina ; Godschalk, Roger W.L.

Levels of DNA damage represent the dynamics between damage formation and removal. Therefore, to better interpret human biomonitoring studies with DNA damage endpoints, an individual’s ability to recognize and properly remove DNA damage should be characterized. Relatively few studies have included DNA repair as a biomarker and therefore, assembling and analyzing a pooled database of studies with data on base excision repair (BER) was one of the goals of hCOMET (EU-COST CA15132). A group of approximately 1911 individuals, was gathered from 8 laboratories which run population studies with the comet-based in vitro DNA repair assay. BER incision activity data were normalized and subsequently correlated with various host factors. BER was found to be significantly higher in women. Although it is generally accepted that age is inversely related to DNA repair, no overall effect of age was found, but sex differences were most pronounced in the oldest quartile (>61 years). No effect of smoking or occupational exposures was found. A body mass index (BMI) above 25 kg/m2 was related to higher levels of BER. However, when BMI exceeded 35 kg/m2, repair incision activity was significantly lower. Finally, higher BER incision activity was related to lower levels of DNA damage detected by the comet assay in combination with formamidopyrimidine DNA glycosylase (Fpg), which is in line with the fact that oxidatively damaged DNA is repaired by BER. These data indicate that BER plays a role in modulating the steady-state level of DNA damage that is detected in molecular epidemiological studies and should therefore be considered as a parallel endpoint in future studies.

2022

Publication
Year
Category