Jump to content

Climate response to a Bluer Arctic with increased newly-formed winter Sea ICe

Project

The scientific community still has no consensus on if and how Arctic warming and sea ice loss can influence weather and climate in the Northern Hemisphere. The BASIC project sets out to better understand the climate response to Arctic change, especially focusing on the new Arctic characterized by more open water in summer (hence bluer) and increased newly-formed sea ice in winter. This latter change has been mostly overlooked, but it has potentially profound climate impacts.

Sea ice change can affect the Atlantic Meridional Overturning Circulation (AMOC) through modulating ocean salinity: AMOC is a large ocean current driven by the sinking of denser water in the northern North Atlantic. It carries tropic warm water into the North Atlantic and thus along the Norwegian coast, but has been weakened by the increase of freshwater due to long-term sea ice melting. As multi-year ice is decreasing rapidly, the recent and future increasing newly-formed ice may change such impacts.

A bluer Arctic may change the respective roles of Arctic Ocean temperature and sea ice in impacting climate. Model experiments have shown that the climate responses to an ice-free state are appreciably distinct from an ice-covered state. We expect that, before the Arctic reaches an ice-free state, Arctic sea ice may shrink stepwise and go through a threshold where ocean temperature takes over to impact climate. Identifying this threshold is important for climate prediction.

Bluer Arctic with increased newly-formed winter sea ice is concurrent with an Arctic warming extending downwards into ocean interior and upwards to mid-troposphere (~5 km). But the climate models have divergent abilities to simulate the observed deep Arctic warming, which caused debates in this field. BASIC will develop a new methodology to conquer this problem.

The BASIC project will analyze available observed and simulated datasets and run new experiments with the Norwegian Earth System Model to address the above issues.

Global snow depths from spaceborne remote sensing for permafrost, high-elevation precipitation, and climate reanalyses

Project

The SNOWDEPTH project will, as the first in the world, directly measure snow depths globally at high spatial resolution from freely available ICESat-2 NASA spaceborne laser altimetry data available since autumn 2018.

To generate global monthly snow depth maps, including for mountainous and forested areas, we will combine the ICESat-2-derived snow depths with Sentinel snow cover/depth data in an ensemble-based data assimilation (DA) framework.

This global snow depth data will fill a large data and knowledge gap within hydrology and cryosphere/climate sciences and is directly relevant for the three application cases within the project: permafrost, high-elevation precipitation and climate reanalysis. The project has two parts and is supported by field activities for ground reference.

In phase 1, we will develop algorithms to derive snow depths at two complementary scales:

  • local snow depths from ICESat-2 profiles that capture the high spatial variability in areas with small-scale topography, and
  • global snow depth maps with monthly temporal resolution, using DA methods.

In phase 2, we will use the derived snow depths within three application fields where they directly benefit to advance the state of the art:

  • Permafrost: include snow depths in an existing model framework to greatly improve modelling of the ground thermal regime, both locally at targeted field sites and at global scale. The current lack of snow depth data is a key bottleneck for permafrost modelling.
  • High-elevation precipitation: analyse how snow depths vary across orographic barriers to increase understanding of high-altitude precipitation processes. These are currently largely unconstrained due to lack of measurements.
  • Climate reanalysis: verify and improve operational and climate reanalysis products through cross-comparison and improved process understanding. In data-sparse areas, reanalysis products are less accurate and largely model-driven given the lack of observations.

Efficient Recycling of E-Waste through Automated and Intelligent Resource Dataflow

Project

The rapid technological advances with increasing application of ICT have accelerated the generation of electronic waste (e-waste). In addition, the green transition objectives under the European Green Deal advocates the utilization of renewable technologies and digital infrastructures, which will continue to increase the demand for critical raw materials, especially rare-earth elements.

Inefficient waste management systems are identified as one of the most challenging barriers in the transition to a sustainable and circular economy (CE). The lack of high-quality data from various stakeholders at the national and international levels along with the heterogeneous nature of e-waste makes the challenge of regulating and supporting e-waste management systems a daunting task for the authorities. In addition, insufficient information about the quantity of e-waste, diversity of products, and resources quality have created multi-dimensional e-waste management challenges for authorities at the local, national, and international levels.

We propose REWARD, an integrated information infrastructure, that aims at systematically identifying reusable and recyclable materials in e-waste products while determining the associated social, environmental, and economic (SEE) dimensions of circularity interventions. In REWARD, the data on e-waste generation and e-waste resources, along with SEE parameters will be fed to the integrated information infrastructure to facilitate automated data sharing and identifying optimal e-waste resources recycling options among e-waste actors. In addition, REWARD provides predictive resource planning and policy recommendations for the improvement of e-waste resource recovery in the future.

The project REWARD addresses the following thematic priorities:

  • resource-efficient ways of covering consumer needs
  • increased material recycling and use of recycled materials
  • identifying barriers and solutions to circular business models and value chain

Airborne Microplastic Detection, Origin, Transport and Global Radiative Impact

Project

The project with the short name "MAGIC" will incorporate advances in atmospheric sampling (e.g., from Global Atmosphere Watch stations, GAW) and detection of microplastics (e.g. long timeseries of measurements) into atmospheric dispersion and inverse modelling algorithms.

This will allow for accurate determination of their atmospheric levels, precise quantification of their sources and reliable constrain of their atmospheric budget.

Important processes affecting the atmospheric dispersion of microplastics will be carefully studied (e.g., turbulence- induced resuspension and oceanic ejection, non-spherical particle modelling) and modelled for the first time.

The obtained knowledge will be used to answer the primary objective of MAGIC for the role of microplastics in the global radiative budget at present and future years.

Our inter-disciplinary team is in a unique position to assess the state of atmospheric microplastic emissions and dynamics and their impact on Earth’s radiative balance. This will enable a targeted approach to investigation and monitoring of atmospheric microplastic signals in atmospheric data and dispersion models.

Primary objective

The primary objective of MAGIC is to investigate sources and sinks of atmospheric microplastics transported to remote regions through the atmosphere and their subsequent climate feedback.

Secondary objectives are to:

  1. Develop FLEXPART model in order to account for non-spherical structures (microfibers).
  2. Develop an inverse modelling algorithm that will be used for source quantification of atmospheric microplastics.
  3. Identify source origin of atmospheric microplastics deposited in snow and ice in high northern latitudes.
  4. Develop and ingest a module into FLEXPART for the resuspension of atmospheric microplastics (grasshopper effect, large-eddy simulations).
  5. Create protocols of standard operating procedures for sampling of atmospheric microplastics in PM10.
  6. Develop an analytical determination methodology for atmospheric microplastics (TED-MS, TD-PTR-MS).
  7. Define the climatic role/impact of atmospheric microplastics at present and future times (radiative transfer modelling).

Quantification of Global Ammonia Sources constrained by a Bayesian Inversion Technique

Project

Nitrogen is a basic component of life and it is present both in proteins and DNA. Its basic chemical form in nature is the non-reactive gaseous N2.

However, in the 20th Century humans converted N2 into more reactive forms. Today, NH3 (ammonia) sustains life and almost 40% of the global population owes its life to NH3 through the use of fertilisers' in food production. Though, implications of ammonia for population and environment have received a lot of attention in the last decades.

On one hand, its presence in the atmosphere in low concentrations is beneficial as it makes the rain less acidic by neutralising sulphuric acid aerosols. On the other hand, increased emissions of NH3 result in reactions with sulphuric and nitric acids contributing 30%-50% to the total PM2.5 and PM10 mass.

Enhanced production of ammonium aerosols can cause premature mortality as they penetrate human respiratory system and deposit in the lungs. Furthermore, ammonium aerosols affect the Earth's radiative balance, both directly by scattering incoming radiation and indirectly as cloud condensation nuclei causing a positive climate feedback (warming).

Despite its importance, NH3 is one of the most poorly quantified gases with a limited number of continuous ammonia measurements in Europe, America or Asia.

However, the lack of observations is covered by satellites and nowadays satellite algorithms are advanced enough to provide daily global concentrations of atmospheric NH3.

We use the existing knowledge of Lagrangian dispersion modelling and Bayesian inversion in NILU accompanied by continuous and satellite measurements to quantify regional (Europe) and global emissions of NH3.

The optimised fluxes of NH3 are studied and the impact to the environment and the population is examined. The methodology is designed to maximize the utility of empirical data for the least understood aspects and use models for source identification, which cannot be inferred from measurements alone.

The main points of COMBAT's developments and progress:

(Publications - see below.)

- The coupling of FLEXPART model with the Kinetic PreProcessor (KPP) to account for chemistry has resulted in a Conference publication (16th IGAC Scientific Confeence). A publication will be lead by the University of Bremen.

- The methodology to calculate NH3 emissions from satellite measurements was adapted to the needs of LSCE and this has resulted in a Conference publication (16th IGAC Scientific Confeence). A publication on this will be lead by the LSCE .

- Satellite measurements of NH3 from CrIS product are being processed to the inverse modelling framework. This will result in a publication focusing in Europe using the new reanalysis product from ECMWF (ERA5).

UV Intercomparison and Integration in a High Arctic Environment

Project

The Arctic is a region which to high extent influences the atmospheric behaviour in the Northern hemisphere and for this reason attracts the attention of the scientific community. The Atmosphere Research Flagship Programme (http://nysmac.npolar.no/research/flagships/atmosphere.html) is an activity aimed to unite the efforts of scientists working in different fields of polar atmospheric research.

An important task of this activity is the study of solar UV radiation and ozone column that are considered important parameters for both climatic studies and biophysical examination of ecosystems. Several observational stations based in Ny-Ålesund, Hornsund and Barentsburg perform measurements of these parameters on a long-term basis.

The objective of the present proposal is to create the basis for their integration into a regional monitoring network, which will also lead to a closer cooperation of the researchers involved in these activities. Since the technical features of the current instrumentation at the stations involved are quite diverse, it is important to compare their ability to provide reliable and homogeneous data sets.

For that reason, an intercomaprison campaign planned in the frame of the proposed activities is considered an important element for the establishment of a Svalbard UV network. Another significant goal is the joint analysis of the available data and elaboration of common data format and data processing strategy for the future network that will provide a homogeneous data set. It is expected that the results achieved in the frame of the present proposal will contribute to more realistic conclusions made by the climatological and biophysical studies.

Plastic pollution; global sources causing consequences for the Arctic, Towards international state-of-the-art understanding and education

Project

Being a fast developing field of research of increasing complexity, education and training on the impact and fate of MP pollution is lacking behind both in teaching state-of-the art research as well as methodology.

After 2 years of the first phase project PlastPoll, this objective has become even more crucial, acting on the increase of available methodology and understanding of the impacts of nano- and microplastic pollution, as a global challenge impacting even remote and fragile regions as the Arctic.

An overall goal is to train students in combining theoretical, experimental and field approaches for an excellent and sound scientific understanding of relevant processes and observations while at the same time contributing to the understanding of the fate and impact of MPs in the environment by developing this still young field of research on a global scale together.

An invaluable added value to the underlying JPI projects ANDROMEDA and FACTS will result in the evolution of the scope from temperate regions to arctic and high arctic regions. The continuation of the successfully established collaboration between Norway, China and USA will support the strong interaction between not only the supervisors, but also the students themselves. They will be both encouraged and facilitated by exchange visits, webinars and winter-/ summer schools including from the ANDROMEDA and FACTS consortia.

We will additionally offer master student projects in all three locations, which will create additional opportunities for students to participate in specific parts of this project.

At the same time, the exchange of experts will ensure the direct transfer of recent knowledge, leading on arctic research of MP in the environment.

The unique combination of participating research institutions (NILU, NPI) and universities (UiT, UCSF, TU) is complementary in scientific quality, academic programs, experience and qualification.

Towards a reliable assessment of nanomaterial health effects using advanced biological models and assays

Project

A sound scientific basis is needed to assess the risks to workers and consumers, to inform regulatory bodies and to ensure a responsible development of nanotechnology. Most of the existing laboratory (in vitro) biological models, exposure systems and doses, as well data (in silico) models do not reflect the real life exposure to nanomaterials (NMs). A significant source for unreliable results is represented by possible interactions of NMs with the reagents and detection systems for toxicity evaluation. The fast pace at which NMs enter the market requires a shift from expensive and ethically doubtful animal testing to innovative, reliable and socially acceptable in vitro and in silico test systems.

NanoBioReal aims to design and establish "real-life like" biological methods from single cell to three-dimensional reconstructed models, including "organ- on-a-chip" systems, as well as data models.

A special focus will be placed on label- and interference-free methods, including label-free microscopy and impedance-based methods. Their capacity to mimic true short and long term exposure situations will be tested by comparison with appropriate testing on animal models and with results from EU and national projects (NANoREG, NANoREG2, NorNANoREG, ProSafe). At the end of the project, reliable, efficient and relevant biological and data models and methods will be delivered to support a safe®-by-design approach to NM development answering the needs of various end-users, stakeholders and regulators.

National partners:

Dept. of Clinical Dentistry (IKO), Fac. of Medicine, Univ. of Bergen (UiB), Norwegian Inst. for Air Research (NILU), National Inst. of Occupational Health (STAMI), and Norwegian Univ. of Science and Technology (NTNU).

Subcontractors:

NorGenotech.

International partners:

Catalan Inst. of Nanoscience and Nanotechnology (ICN2), Univ. of Gdansk. Collaborators: Dept. of Physics and Technology (UiB), Dept. of Electrical Engineering (HVL), NIOM, TkVest and TkØst.

CeO2 Nanoparticles-assisted stem-based cell therapy: an innovative nanopharmaceutical approach to treat retinal degenerative diseases

Project

The main aim of CELLUX is to develop a novel pharmaceutical based on CeO2 nanoparticles (NPs) eye drops to treat Age Macular Degeneration (AMD) that in combination with stem cell-based therapeutic strategies, can stop degeneration and restore vision.

The progression of AMD is associated with an increase of oxidative stress and inflammatory response in the eye leading to retinal cell death. This chronic disease represents a major cause of blindness in elderly people, and affects millions of people worldwide.

CeO2 NPs have antioxidant properties due to a unique electronic structure that when reduced to the nanoscale, oxygen defects appear at their surface, behaving as sites for free radical scavenging.

The project is financed via ERA NET EuroNanoMed3 program and it is coordinating by University Hospital (VHIR) Barcelona. The consortium consists of six partners from five countries: Spain, Norway, Italy, Czech Republic and France.

The project started in January 2020 and will be performed in a period of 36 months. The project tasks are broken into 6 work packages (WPs).

NILU is involved WP2. "Mechanistic effects and safety of the NPs in vitro" and is responsible for the task 2.1: Cellular interaction and distribution of CeO2 NPs.

NILU will study safety of the CeO2 NPs by the endpoints cytotoxicity (alamarBlue assay) and genotoxicity (enzyme-linked version of the comet assay). Oxidative stress at the DNA level, as well as DNA strand breaks will be studied by the comet assay. Further, mechanisms of interaction of CeO2 NPs with cells will be studied by confocal microscopy (cellular uptake, endocytosis and exocytosis). Antioxidant protective effect of CeO2-NPs will be compared with effect of known antioxidants as ascorbic acid, alpha-tocopherol, beta-carotene.

In the last year NILU has:

i) Established a retinal cell model (RPE) at NILU`s premises

ii) Performed cyto- and genotoxicity testing of the oxidant Tertiary-butyl hydroperoxide (TBH) and of CeO2 NPs produced by the partners in the project on the well-known cellular model A549 as well as in RPE cells.

iii) Investigated the antioxidant protection against DNA damage with known antioxidants on a well-known cellular model (A549) The known antioxidants ascorbic acid, alpha-tocopherol and beta-carotene were tested for their capacity to protect cells from oxidative DNA damage, applying the comet assay.

Experiments are ongoing to test these antioxidants in combination with TBH and CeO-NPs, measured by cell viability and DNA damage. No cell death nor induction of DNA damage was measured after exposure to CeO-NPs.

NILU also investigated cellular interaction of CeO-NP and by confocal microscopy. NILU participated with several scientist at the consortium meetings. Experimental work is a bit delayed due to COVID 19 and laboratories lock down.

REliable Global Methane Emissions estimates in a changing world

Project

In REGAME we will update chemistry transport models (FLEXPART, OsloCTM) to include the kinetic isotope effect (KIE) of methane (CH4), enabling better constraints on the CH4 budget (KIE is dependent on source/ sink).

We will update the atmospheric inversion framework FLXINVERT to include novel use of satellite CH4 fields (Sentinel 5P).

This will include significant changes to FLEXINVERT, which will also be applicable to other satellite data e.g. carbon dioxide (CO2) and improve the model capabilities to handle large data fields in general.

With these upgrades we assess CH4 emissions from the major sources (wetlands, biomass burning, anthropogenic) at the global scale using all available data (e.g. ICOS, NOAA data, data on ebas.nilu.no).

This data includes measurements from the Zeppelin Observatory in the Arctic, to Troll in Antarctica, i.e. from pole-to-pole. Our cross disciplinary team is in a unique position to assess the state of the Arctic/ Antarctic ocean CH4 reservoir.

This reservoir is currently considered a minor source but has potential for large scale disruption if emissions increase suddenly and rapidly.

We will perform measurements of CH4 over the ocean (research vessels Helmer Hanssen, Kronprins Haakon) assess temporal variability of CH4 emission from the seabed and movement through the water column (due to e.g. variable microbial activity, ocean stratification, currents and seep emission rates), with long-term (1 year) measurements at a mooring south of Svalbard (deployed for the NorEMSO project) in an area bearing gas hydrates and active CH4 seeps. Furthermore we add to the knowledge of potential seep locations by performing echo-souding surveys.

Combining insights from these temporal and spatial studies will allow a more targeted approach to assessing the ocean source in general. Specifically in REGAME we will run a regional/ Arctic inversion including these data to constrain high latitude emissions including from the ocean.

Low Latency Air Quality Management

Project

Existing air quality (AQ) monitoring and management (AQMS) methods and evolving modelling practices across Norwegian and European cities have achieved significant improvements of AQ but further progress is needed due to some quality-driven requirements, such as low-latency AQ prediction. This can only be achieved by intelligent data processing at multiple levels of granularity.

To this end, affordable, effective and intelligent tools are needed that utilize the current advances in digitization of all spheres of society, providing radical innovation of air quality management.

The AirQMan project promises autonomous computational methods and techniques that can be used to develop such solutions, and has the potential for opening up a new era in air quality management. Our strong belief is that such a system can be realized across the Edge-Fog-Cloud continuum, extending data processing and computational intelligence from the Cloud to multiple levels of Fog nodes towards the edge of the network.

The project will develop AirQDM – a novel data processing design model that will autonomously determine the optimal data fusion processing flow, the right data sources, and the right trained deep learning (DL) model for maximizing the accuracy of a prediction related to an AQ request.

A second innovation of the project, AirQWare will determine (predict) the optimal distributed deployment for an efficient computation of the DL model while satisfying requirements on accuracy and latency, and adapt the deployment of the DL model during runtime as necessary to maintain accuracy and latency requirements.

By applying the AirQMan approach, the new generation of AQMS will provide: i) low-latency data validation and fusion to increase the accuracy of air quality evaluation, and to support intelligent services, respectively, and ii) cognitive decision making with various degrees of autonomy enabling low-latency actuations of AQ mitigations.

Glutamate Oxaloacetate Transaminase Nanoparticles targeted to the Brain for Neuroprotection in Ischemic Stroke

Project

The project will develop and test the first targeted and long-acting nanomedicine with neuroprotective properties for ischemic stroke, with potential application in other neurological diseases.

The Team will demonstrate that the targeted delivery of a long-acting glutamate oxaloacetate transaminase (GOT) nanoparticle to the brain in order to enhance the neuroprotective character of GOT (i.e., prevention of neuronal apoptosis and cell death) in a model ischemic stroke. Systemically administered GOT has been demonstrated to deplete blood glutamate levels, which in turn causes an efflux of excess glutamate from the brain.

One major shortcoming of this approach is that the systemic effect of GOT on brain glutamate concentration is short-lived (~1 h), mainly because of its rapid elimination from the body. The project will: i) increase the circulatory half-life of GOT and ii) target GOT to- or near to- the ischemic region of the brain where GOT can exert its therapeutic catalytic activity. These objectives will be met by preparing a Blood-Brain-Barrier (BBB)-targeted nano-formulation of GOT (GOT-NP).

What is particularly original in this strategy is that accumulation of GOT-NP at the blood-side of the BBB will promote the efflux of glutamate from the brain by increasing the glutamate gradient on either side of the BBB. As such, GOT-NP does not actually have to cross the BBB to produce an enhanced neuroprotective effect. Crossing the BBB, which is substantially more challenging, would represent an added bonus of selectively depleting glutamate in the cerebrospinal fluid.

In addition to the design and synthesis of GOT-NP, this project will investigate and validate iii) the mechanism of in vitro neuroprotection as well as iv) the in vivo biodistribution and neuroprotective effect of GOT-NP in an animal model of ischemic stroke, in order to conclude pre-clinical studies and place the Team in a position to embark on clinical testing.

Intelligent Environmental Reporters

Project

The main objective of the INTER project is to develop Intelligent Environmental Reporters- green nanoparticles that can be used to measure residual oil directly in an environmentally friendly manner.

To understand how the particles can be used to estimate how much residual oil there is, and where, we will perform computer simulations in concert with physical experiments in the laboratory. We will also develop new analytical techniques that can read the particles' "memories", the oil reporters must be able to memorize how much oil they have encountered in the oil reservoir.

With time, all oil fields will experience a decline in production. To counteract this development, one may inject water into some wells and push the remaining oil towards other wells where it can be produced. Even after this, there is normally a lot of residual oil left. To determine how much, different methodes are used. One method is partitioning interwell tracer test (PITT), another is single well chemical tracer test (SWCTT). Both use the difference in flow speed of two different tracers. One tracer is a water tracer and the other is a partitioning tracer. Both are added to the injection water, and by measuring the difference in arrival time, an estimate of the residual oil can be given. This is important to know to plan continued oil production in a field. Unfortunately, today's tracer technology raises several health, safety and the environment (HSE) issues. Large volumes of highly flammable fluids may have to be stored on platforms or environmentally "red" chemicals are used.

The main objective of the INTER project is to develop Intelligent Environmental Reporters- green nanoparticles that can be used to measure residual oil directly in an environmentally friendly manner. To understand how the particles can be used to estimate how much residual oil there is, and where, we will perform computer simulations in concert with physical experiments in the laboratory. We will also develop new analytical techniques that can read the particles' "memories", the oil reporters must be able to memorize how much oil they have encountered in the oil reservoir.

So far in the project we have started the synthesis of carbon-silica hybrid nano particles, and silica particles doped with europium. These particles have further had their surface modified with a polymer. Preliminary results were presented at a conference in «Nanohybrides 16 Porquerolle June 2019» Measurement of particle stability in formation water has been started. Particles of silica with molybdate or tungstanate has also been synthesized. Molybdate and tungstanate will give increased fluorescence of europium, and thereby better sensitivity. These particles will be surface modified with polymers. Different oil soluble tracers will then be adsorbed to the polymer surface. The tracers will preferably be fluorescent dyes.

Numerical models for the aggregation of nanoparticles have been developed, and these models will be important for the quantitative interpretation of the flow experiments. The work on safer by designs has also started. Tests have been made with passive tracers like sodium iodide and known silica nanoparticles. Furthermore, XDLVO modeling with Comsol Multiphysics has been carried out considering how nanoparticles with different properties behave under varying conditions - rock, formation water, temperature, etc. The simulations consider van der Waals forces, EDL and Born repulsion as well as the velocity and Brownian motion.

Lyon has performed some tests of the first nanoparticles from NTNU. Several aspects have been revealed:

- we measured the hydrodynamic size under the two solvents and check the stability at room temperature

- we performed the excitation, emission and lifetime decay rates for both solutions and solid sample.

- the correlation curves collected by dynamic light scattering reveals aggregation of samples around 2 micrometers that decreases progressively after 12 hours to reach an average value of 500 nm.

After redispersion by sonication the particles remain on these levels independently of solvent used (a check with an intermediate polarity using isopropanol was performed)

The fluorescent spectra reveal a slight intense signal in the UV-visible zone in the range 400-500 nm with some narrow peaks that are common of powder and solution and no phosphorescence signal in the ms range. The lifetime value is estimated around 7 microseconds under excitation 340 and emission 440 nm.

NILU:

A batch of nano-sized silica particles made in the INTER project have been tested for their potential to damage the DNA and induce carcinogenic effects. The effect on DNA was tested on a human lung cell line, and on liver- and gill cell lines from Rainbow trout.

The particles did not induce a significant effect on the DNA, indicating a low genotoxic potential. Non-genotoxic substances may, however be carcinogenic. This can be tested with use of the so-called cell transformation assay, in which carcinogenic substances induce morphological changes in the appearance cells. Based on two separate experiments, there are indications that the silica nanoparticles can induce cell transformation at relatively high concentrations (> 10 µg/cm2), indicating a carcinogenic potential. Further experiments will be performed to confirm this observation, but the observation emphasize the importance of testing manufactured nanoparticles for their potential toxicity to do a proper risk assessment.

Hyperlocal precipitation forecast everywhere in the world on a simple demand?

Project

The PrecX project will develop a forecast service that provides highly accurate, hyper-local, and on demand precipitation prediction everywhere in the world.

PrecX will be a ready-to-go digital solution for hydropower-related companies to easily get a tailor-made precipitation forecast. Hydropower companies are dependent on the accuracy of hyper-local precipitation forecast as this is crucial information used to establish the inflow of water to rivers or reservoirs, consequently establishing the right pricing of produced electricity. The energy market is increasingly digital, and PrecX will be a lower cost solution that provides accurate forecasts based on different data sources.

This milestone project will prepare PrecX for full-scale development, and address the R&D challenges of making an operationally viable forecast, as well as investigate the potential business model for PrecX.

Plastic pollution; a global challenge towards harmonised understanding, education and methodology in Europe, USA and China

Project

Being a fast developing field of research of increasing complexity, education on the impact and fate of MP pollution is lacking behind both in teaching, state-of-the art research as well as methodology.

An overall goal is to train students in combining theoretical, experimental and field approaches for an excellent and sound scientific understanding of relevant processes and observations while at the same time contributing to the understanding of the fate and impact of MPs in the environment by developing this new emerging field of research on a global scale together. An invaluable added value to the underlying JPI projects PLASTOX and BASEMAN will result in the evolution from the European to global scale as well as to broaden the scope from marine to also terrestrial MP pollution.

A strong interaction between not only the supervisors, but also the students will be both encouraged and facilitated by exchange visits, webinars and winter-/ summer schools. We will additionally offer master student projects in all three locations, which will create additional opportunities for students to participate in specific parts of this project.

At the same time, the exchange of experts will ensure the direct transfer of recent knowledge and understanding as well as help to develop a strong consortium, leading on global research of MP in the environment. The unique combination of participating research institutions (NILU, NPI) and universities (UiT, UCB, TU) is complementary in scientific quality, academic programs, experience and qualification.

Our collaborative educational project combines experienced scientists and educators (from different relevant disciplines), in an innovative project addressing the urgent need of knowledge on how MP move in the environment, harm organisms and how possible remediation actions can be designed.

Fluxes and fate of microplastics in Northern European waters

Project

The project FACTS will create new knowledge and improve our understanding on the sources, transport, occurrence, and fate of small microplastics (MP) in the northern marine waters. FACTS will combine newest methods to describe transport and geographical sources of microplastics contamination. We will also investigate where microplastic particles will end up both in temperate waters of the southern North Sea and the Arctic waters of the Barents Sea.

Integrated Risk Assessment Framework for Evaluating the Combined Impacts of Multiple Pressures on Arctic Ecosystems

Project

The primary objective of this proposal is to develop, explore, and evaluate a novel integrated risk assessment framework for assessing combined impacts of multiple pressures on the state of Arctic ecosystems. The focus herein will be upon data-rich pressures and ecosystems to enable development and a thorough evaluation of the framework.

Arctic ecosystems are subject to multiple pressures, of which two of the major challenges are climate change and exposure to long-range transported, persistent, bioaccumulative, and toxic contaminants.

These issues have largely been addressed individually, yet there is a critical need to enhance the understanding of combined impacts of multiple pressures and their interactions on Arctic ecosystem state and health. This calls for better integration of research both within and across disciplines in a comprehensive research initiative.

The primary objective of this proposal is to develop, explore, and evaluate a novel integrated risk assessment framework for assessing combined impacts of multiple pressures on the state of Arctic ecosystems.

The focus herein will be upon data-rich pressures and ecosystems to enable development and a thorough evaluation of the framework.

Hence, the initial focus will be on interacting effects of environmental organic contaminants and climate change on top-predators of a coastal and an offshore Arctic marine ecosystem in the Svalbard and Barents Sea areas.

Important sub-goals include research to

(1) develop the framework through evaluating existing knowledge of the most relevant pressures and their interactions,

(2) explore the utility of the framework to assess interactions of contaminants and climate change on the state of two selected Arctic marine ecosystems,

(3) explore the utility of the framework to assess combined impacts across ecosystems, space, and time, and

(4) evaluate the overall framework, guide further research, and communicate key results to regulatory bodies and institutions.

Overall, the project is designed to both

(i) strengthen research on critical Arctic environmental issues across disciplines and institutions, and

(ii) contribute with scientific knowledge and possible mitigation strategies of interest to relevant environmental agencies as well as international programs and agreements.

Bildekk

Used tires in asphalt production – Feasibility Study

Project

How should we best dispose of our used car tires? The RubberRoad project addresses the responsible use of tires, stimulating the production of asphalt with rubber content in Norway.

Used tires represent a significant waste problem both globally and in Norway, with ca 60,000 tons of tires been discarded in our country every year. It is not allowed to dump used tires in a landfill. Instead, tires are burned for energy or recycled for their material like for use to fill artificial soccer fields. However, the waste treatment methods for used tires currently used in Norway leads to serious environmental and climate effects, including harmful emissions of micro-plastics and chemicals to water, air, and soil. Therefore, alternative more sustainable ways to dispose of our used tires need to be considered.

RubberRoad proposes to use rubber from used tires in the production of asphalt for road and bicycle ways. This recycling approach has not gained much attention in Norway despite is apparent advantages, such as noise reduction, increased durability, safer shock impact, and reduced climate and environmental impacts.

The Life Cycle Analysis carried out during this project feasibility study has demonstrated a series of environmental benefits in the use in the use of rubber in asphalt production. It has also helped identify relevant knowledge gaps related in particular to the use phase of the rubberized asphalt and its impact to noise, air and micro-plastic pollution. Better understanding of these effects would probably result in even larger environmental benefits of rubberized asphalt with respect to standard asphalt production.

However, while the tire recycling industry is generally positive to the disposal of used tires in asphalt production, additional incentives need to be put in place for the Norwegian asphalt producers to consider actively contributing to this development.

Innovativ administration of air and environment in Norwegian municipalities

Project

The iFLINK project shall facilitate for monitoring AQ at many different places at low costs. Scientists working in the project will develop and use new calibration and visualization methods based on machine learning and data fusion techniques to correct and improve data quality from the cheaper sensors. They shall also develop an open technology solution to obtain and quality secure data from different AQ sensors, so that municipalities and other users can obtain AQ data in satisfying quality.

Many municipalities in Norway would like to measure air quality (AQ) in their local environment and share this information with their citizens.

However, official monitoring stations are quite expensive in acquisition and maintenance, therefore only a limited number of these stations are set up in Norwegian municipalities.

As alternative, more simple and cheap air quality sensors could be used that are easier to buy from a range of manufacturers. The challenge for these kind of sensors is the relative high uncertainty around the quality of their data. In addition, they require good solutions for data communication and storage to be able to set together AQ information from a range of different sensors and thus get a good overview of the AQ situation in real time.

The iFLINK project shall facilitate for monitoring AQ at many different places at low costs. Scientists working in the project will develop and use new calibration and visualization methods based on machine learning and data fusion techniques to correct and improve data quality from the cheaper sensors. They shall also develop an open technology solution to obtain and quality secure data from different AQ sensors, so that municipalities and other users can obtain AQ data in satisfying quality.

The project idea is that anyone can use iFLINK results and technology to develop real time services connected to AQ, climate change and noise pollution. Municipalities are most important supporters and partners in the project, first pilots will be carried out in the participating municipalities Oslo (project lead), Bergen, Bærum, Drammen and Kristiansand.