Jump to content

Towards a reliable assessment of nanomaterial health effects using advanced biological models and assays (NanoBioReal)

Project details

Status: Ongoing

Project period: 2019–2022

Principal: Research Council of Norway (RCN) (288768)

Coordinating institution: University of Bergen

Collaborators: NILU

A sound scientific basis is needed to assess the risks to workers and consumers, to inform regulatory bodies and to ensure a responsible development of nanotechnology. Most of the existing laboratory (in vitro) biological models, exposure systems and doses, as well data (in silico) models do not reflect the real life exposure to nanomaterials (NMs). A significant source for unreliable results is represented by possible interactions of NMs with the reagents and detection systems for toxicity evaluation. The fast pace at which NMs enter the market requires a shift from expensive and ethically doubtful animal testing to innovative, reliable and socially acceptable in vitro and in silico test systems.

NanoBioReal aims to design and establish “real-life like” biological methods from single cell to three-dimensional reconstructed models, including “organ- on-a-chip” systems, as well as data models.

A special focus will be placed on label- and interference-free methods, including label-free microscopy and impedance-based methods. Their capacity to mimic true short and long term exposure situations will be tested by comparison with appropriate testing on animal models and with results from EU and national projects (NANoREG, NANoREG2, NorNANoREG, ProSafe). At the end of the project, reliable, efficient and relevant biological and data models and methods will be delivered to support a safe®-by-design approach to NM development answering the needs of various end-users, stakeholders and regulators.

National partners:

Dept. of Clinical Dentistry (IKO), Fac. of Medicine, Univ. of Bergen (UiB), Norwegian Inst. for Air Research (NILU), National Inst. of Occupational Health (STAMI), and Norwegian Univ. of Science and Technology (NTNU).



International partners:

Catalan Inst. of Nanoscience and Nanotechnology (ICN2), Univ. of Gdansk. Collaborators: Dept. of Physics and Technology (UiB), Dept. of Electrical Engineering (HVL), NIOM, TkVest and TkØst.

Updated: 16.09.2022

Towards a reliable assessment of nanomaterial health effects using advanced biological models and assays has 12 publications at NILU:

Linking Nanomaterial-Induced Mitochondrial Dysfunction to Existing Adverse Outcome Pathways for Chemicals

Murugadoss, Sivakumar; Vrček, Ivana Vinković; Schaffert, Alexandra; Paparella, Martin; Pem, Barbara; Sosnowska, Anita; Stępnik, Maciej; Martens, Marvin; Willighagen, Egon L.; Puzyn, Tomasz; Cimpan, Mihaela-Roxana; Lemaire, Frauke; Mertens, Birgit; Dusinska, Maria; Fessard, Valérie; Hoet, Peter H.


Validation of an advanced 3D respiratory tri-culture model at the air-liquid interface for hazard assessment of nanomaterials

Camassa, Laura Maria Azzurra; Elje, Elisabeth; Mariussen, Espen; Longhin, Eleonora Marta; Haugen, Kristine; Dusinska, Maria; Zienolddiny-Narui, Shan; Rundén-Pran, Elise


Decitabine-induced DNA methylation-mediated transcriptomic reprogramming in human breast cancer cell lines; the impact of DCK overexpression

Buociková, Verona; Tyciakova, Sylvia; Pilalis, Eleftherios; Mastrokalou, Chara; Urbanova, Maria; Matuskova, Miroslava; Demkova, Lucia; Medova, Veronika; Longhin, Eleonora Marta; Rundén-Pran, Elise; Dusinska, Maria; Rios Mondragon, Ivan; Cimpan, Mihaela-Roxana; Gábelová, Alena; Soltysova, Andrea; Smolkova, Bozena; Chatziioannou, Aristotelis


Advanced Respiratory Models for Hazard Assessment of Nanomaterials—Performance of Mono-, Co- and Tricultures

Camassa, Laura Maria Azzurra; Elje, Elisabeth; Mariussen, Espen; Longhin, Eleonora Marta; Dusinska, Maria; Zienolddiny-Narui, Shanbeh; Rundén-Pran, Elise


Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models

Buociková, Verona; Longhin, Eleonora Marta; Pilalis, Eleftherios; Mastrokalou, Chara; Miklíková, Svetlana; Cihova, Marina; Poturnayova, Alexandra; Mackova, Katarina; Bábelová, Andrea; Trnkova, Lenka; El Yamani, Naouale; Zheng, Congying; Mondragon, Ivan Rios; Labudova, Martina; Csaderova, Lucia; Kuracinova, Kristina Mikus; Makovicky, Peter; Kučerová, Lucia; Matuskova, Miroslava; Cimpan, Mihaela-Roxana; Dusinska, Maria; Babal, Pavel; Chatziioannou, Aristotelis; Gábelová, Alena; Rundén-Pran, Elise; Smolkova, Bozena


An Advanced In vitro Respiratory Model for Genotoxicity Testing at the Air-Liquid Interface

Rundén-Pran, Elise; Mariussen, Espen; Elje, Elisabeth; Chary, A.; Longhin, Eleonora Marta; El Yamani, Naouale; Dusinska, Maria; Gutleb, AC; Serchi, T


Micronucleus assay applied to advanced in vitro lung models at ALI for nanotoxicity assessment

Elje, Elisabeth; Mariussen, Espen; Dusinska, Maria; Rundén-Pran, Elise


Development of an Adverse Outcome Pathway for Chronic and Multi-Generational Impacts of Nanomaterials in the Environmental Indicator Species Daphnia Magna

Lynch, Iseult; Reilly, Katie; Cimpan, Mihaela Roxana; Drønen, Anne-Marthe; Rios-Mondragon, Ivan; Cambier, Sébastien; Gutleb, Arno; Serchi, Tommaso; Dusinska, Maria; Rundén-Pran, Elise; Mariussen, Espen; Longhin, Eleonora Marta; Murugadoss, Sivakumar; Hoet, Peter; Willihagen, Egon; Martens, Marvin; Afantitis, Antreas; Melargakis, Georgia; Vincovik Vrcek, Ivana


Genotoxicity of nanomaterials: Advanced in vitro models and high throughput methods for human hazard assessment—a review

Kohl, Yvonne; Rundén-Pran, Elise; Mariussen, Espen; Hesler, Michelle; El Yamani, Naouale; Longhin, Eleonora Marte; Dusinska, Maria


Thermodynamic parameters at bio-nano interface and nanomaterial toxicity: A case study on BSA interaction with ZnO, SiO2 and TiO2

Precupas, Aurica; Gheorghe, Daniela; Botea-Petcu, Alina; Leonties, Anca Ruxandra; Sandu, Romica; Popa, Vlad Tudor; Mariussen, Espen; El Yamani, Naouale; Rundén-Pran, Elise; Dumit, Veronica; Xue, Ying; Cimpan, Mihaela Roxana; Dusinska, Maria; Haase, Andrea; Tanasescu, Speranta