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INTRODUCTION
Atmospheric dispersion models will always be uncertain due to the inevitable uncertainties 
associated with input data and physical formulations. This paper deals with calculations of un-
certainty in association with a newly developed dispersion model for open roads called WORM 
(Weak Wind Open Road Model). 

THE WORM MODEL
The WORM model is an integrated Gaussian puff/plume model for calculation of hourly aver-
age concentrations from open roads and highways in a set of arbitrary receptor points.
The model consists of the following system components:

An emission pre-processor
A pre-processor for meteorological data
A background concentration pre-processor
An integrated Gaussian puff/plume dispersion model

The emission pre-processor generates hourly emission data (Q in g/ms) for each lane of the 
roadway based on traffic data (AirQUIS, 2005). The background concentration pre-processor 
generates hourly background concentrations for the road, based on using nearby (upwind) back-
ground stations, or urban/regional scale models (AirQUIS, 2005). Background concentrations 
are added to the WORM model concentrations to make them comparable with local (roadside) 
air quality observations.
A meteorological pre-processor calculates several meteorological parameters including:

Friction velocity (u*), temperature scale (θ*) and Monin-Obukhov length scale (L)
Horizontal and vertical diffusivities (σu, σv, σw)
Mixing height (Hmix)

based on Monin-Obukhov similarity theory, and hourly data for local wind speed and stabil-
ity (vertical temperature gradient) (AirQUIS, 2005; Walker, S.E. and J. Berger, 2007). For the 
cuurent version of the WORM model, a minimum value of horizontal plume diffusivity (σu and 
σv) equal to 0.5 m/s is used.
The concentration in a receptor point r = (xr, yr, zr) is calculated by:

•
•
•
•

•
•
•

where Q is the emission intensity (g/ms), Ueff is the plume effective wind speed (m/s), Heff is 
the plume effective height above ground (m), and where the coordinates of the receptor point 
and dispersion parameters in the integrand generally depends on the position s on the road, and 
time t since release. The integral is calculated numerically by using a highly accurate Gaussian 
quadrature routine.
Growth of dispersion parameters σx = σy and σz are calculated based on atmospheric background 
turbulence (AirQUIS, 2005; Walker, S.E. and J. Berger, 2007), with initial sizes of puffs or 
plumes, σx0 = σy0 and σz0, calculated by the same semi-empirical equation for traffic-originated 
turbulence as used in the CAR-FMI model (Härkönen, J. et al., 1996). A comprehensive evalu-
ation of the WORM model is given in Berger, J. et al. (2007). 

RESULTS
Fig. 2 shows the result of running the WORM model for NOx, using data from an 850 m long  
4-lane roadway at Nordbysletta, close to Oslo, Norway (Walker, S.E. and J. Berger, 2007). 
The graph contains hourly average observed concentrations (blue line), for a station situated 
17 m from the roadway at a height of 3.5 m above the ground, together with model calculated 
concentrations for the same receptor point, in the form of an ensemble mean (red line), together 
with a 90% confidence interval (green lines). The period covered is 3 February – 10 February 
2002, but only hours with wind direction towards the station are included. The number of en-
semble members used is N = 1000.
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Fig. 2 WORM model results for NOx.

Individual ensemble members are created by drawing the following model variables: U10m 
(wind speed at 10 m), u*, θ*, L, θv = tan-1(σv/u)), θw = tan-1(σw/u)), and initial size of plume σy0 
(σz0 = σy0/2) using Gaussian pdfs around each nominal or model calculated (derived) value, 
with standard deviations set to 10% of respective mean values, except for U10m, which is locally 
observed, and where the standard deviation has been set to 0.15 m/s. The standard deviation 
of model formulation error has been set to , where Cr is the corresponding model 
calculated concentration. Using this uncertainty model, 90% confidence intervals have been 
calculated using the ensembles (green lines in Fig. 2), and empirically here they contain the 
observed concentrations (blue line in Fig. 2) in about 85% of the hours.

SUMMARY AND CONCLUSION
A new integrated Gaussian line source model for open roads (WORM) is presented, which 
produces its output not as single concentration values, but rather as ensembles of values based 
on quantification of uncertainties associated with the model. Mean values and p% confidence 
intervals for the true concentrations can then be calculated based on the ensembles. Some 
preliminary, but encouraging, results using data from a 4-lane roadway at Nordbysletta, close 
to Oslo, Norway is presented.
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QUANTIFICATION OF UNCERTAINTIES
The model value Cr is uncertain due to inevitable uncertainties associated with the model vari-
ables θ = (θ1, θ2,…, θn), and with the model formulation itself. These can generally be described 
using Bayesian statistics (Box, G.E.P. and G.C. Tiao, 1992). If θt = (θ1, θ2,…, θn) denotes the 
correct (best input or true) values of the model variables for the current hour, and Tr denotes the 
correct or true concentration in receptor point r, we may write 

where εr denotes the model formulation error, i.e., the error induced by the model equations 
themselves, and not due to errors in the model data. If we are willing, and able, to put Bayesian 
subjective (prior) probabilities on all the model variables θi, for i = 1,…,n, and on model formu-
lation errors εr, we obtain a Bayesian subjective (prior) probability distribution function (pdf) 
πr(T) associated with the true concentration Tr.
Generating πr(T) in the form of an explicit function, is a difficult task. Instead an approximation 
is sought based on using a discrete set of points, or ensemble, {T(1), T(2), …, T(N)}, produced by 
simulating from πr(T), i.e., to draw values from it, where N denotes the number of ensemble 
members (or ensemble size).
A simple way to describe πr(T), and to make random draws from it, is to define πr(T) using a 
series of conditional pdfs associated with the model variables θi and formulation errors ε. This 
can be done recursively, viewing the model variables and calculations as a directed acyclic 
graph, as depicted in Fig. 1, showing a conceived fragment of the model, where a model vari-
able θk is calculated based on other model variables θ1, θ2, …, θj, indexed here from 1 to j for 
simplicity of notation.
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Fig. 1. Model calculation fragment (part of a directed acyclic graph).
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The conditional pdf πk(θk | θ1, θ2, …, θj) can then be defined recursively as follows. Assuming 
that the joint unconditional pdf π1:j(θ1, θ2, …, θj) is already defined in the acyclic directed graph 
for the variables θ1, θ2, …, θj, and that a pdf is locally defined for the local model formulation 
error εk, the conditional pdf for θk = θk(θ1, θ2, …, θj) + εk is uniquely defined. The argument 
is repeated until a (conditional) pdf has been defined for all model variables in the graph, and 
subsequently for the last model variable calculated, the model output concentration.
The graph oriented recursive definition of the prior pdf πr(T) enables us also to easily draw 
samples from it. If we assume that we already have obtained a sample (θ1, θ2, …, θj) from π1:j(θ1, 
θ2, …, θj), we may draw a sample of θk from πk(θk | θ1, θ2, …, θj) by drawing a sample εk from 
the distribution of the local model formulation error, and adding this to the function value θk = 
θk(θ1, θ2, …, θj,). We then continue this process of calculating samples of model variables until 
we obtain a sample of the model output concentration T(i). By repeating the procedure N times 
we obtain our desired ensemble of N model concentrations, representing a set of N independent 
and identical (exact) samples from the prior pdf πr(T). 
It is important to use available air quality observations to calibrate and adjust the prior pdf 
πr(T) to make sure that calculated p% confidence intervals contains observed concentrations 
about p% of the time.


