

Emission inventories for air pollutants: Needs, status, and further development

Jozef M. Pacyna, Stein Manø, Elisabeth G. Pacyna

Center for Ecological Economics, Norwegian Institute for Air Research (NILU) Kjeller, Norway

Emission inventory needs and clients

Emission inventories should be:

- complete
- accurate
- transparent

Types of emission inventories:

- supporting inventories
- · effects inventories
- event (process) inventories
- time scale (historical and future projections)

Table 1: Examples of types of inventories

Designator	Geog Area	Spatial Resolution	Temporal Resolution	
Supporting Inventories Vegetation Land cover	Global Global	1° x 1° 1° x 1°	NA NA	
Effects Inventories Acidification (SO ₂) Air toxics (metals) Atmos. visibility (NO _x) Climate (CO ₂)	Global UK Global Global	1° x 1° 50 km x 50 km 80 km x 80 km 5° x 5°	Annual Annual Hourly Annual	
Event Inventories Volcanic emissions War-related emissions	Global Kuwait	None Country	NA NA	
Time Scaldnventories Historical Future projections	USA Global	States Countries	Annual Seasonal	

NA = not available

Needs for environmental policy decisions:

- · sector/category data reporting
- · national/regional data reporting
- historical/current data reporting
- emission scenarios/projections

Needs for transport modeling

- spatial distribution & emission maps
- · temporal resolution of emission data
- species resolution of emission data

Major clients in Europe:

- international policy making (conventions: UN ECE, LRTAP, OSPARCOM, HELCOM, MEDPOL, programs: AMAP, EU directives)
- national regulatory and statutory planning authorities
- international emission trading programs
- modelers of air pollutant transport and deposition (UN ECE EMEP, EU projects, national projects)
- public "right-to-know" policies (e.g. local communities)

Status of emission inventories

Assessment of emission inventories

Table 2: Status assessments of emission inventorying

			Spatial resolution		Temporal resolution	
Species	Global flux	European flux	Specific regions	Overall	Specific regions	Overall
CO ₂	G ^a	G	G	P ^b	G	G
со	F°	G	G	P	F	NI ^d
CH ₄	F	G	F	P	Р	P
VOC	P	F	F	Р	F	P
PAH	P	F	P	NI	NI	NI
Chlorinated HC	F	F	F	Р	NI	NI
NO _x	G	G	G	F	F	P
N ₂ O	P	F	F	Р	F	F
NH ₃	P	G	F	F	F	NI
CFC	G	G	P	P	Р	F
SO ₂	G	G	G	F	F	P
Reduced S	P	F	F	P	F	P
HCI	P	F	F	NI	NI	NI
HF	NI	Р	P	NI	NI	NI
Radon	F	F	P	Р	NA°	NA
TPM	P	F	F	Р	NI	NI
SO2-	NI	F	Р	NI	Р	NI
Metals	F	F	F	F	NI	NI
Soot	P	F	Р	Р	NI	NI

^aG: good, ^bP: poor, ^cF: fair, ^dNI: no inventory; ^eNA: not applicable

Existing selected global primary data bases

(on the basis of a literature review by Graedel, Pacyna, and others, published in Global Biogeochemical Cycles, 7, 1-26, 1993)

Parameter	Spatial Resolution ^a	Temporal Resolution	
	Atmosphere		
Vector wind	2.5° x 5° x 11L	monthly	
Temperature	2.5° x 5° x 11L	monthly	
Specific humidity	2.5° x 5° x 11L	monthly	
Surface air temperature	2° x 2.5°	monthly	
ΔT surface	4° x 5°	monthly	
ΔT surface	hemisphere	monthly	
Precipitation	2° x 2.5°	monthly	
Äprecipitation	"global"	seasonal	
Clouds	280 km x 280 km	3-hourly	
Clouds	5° x 5°	monthly	
Tropical temperature	280 km x 280 km x 5L	monthly	
Tropical water vapor	280 km x 280 km x 5L	monthly	
Total column O ₃	280 km x 280 km	monthly	
	Land		
Topog/bathymetry	1° x 1°	none	
Topog/bathymetry	5' - 10'	none	
Albedo	1° x 1°	none	
Coal resources	Country	none	
Vegetation	1° x 1°	none	
Vegetation	0.5° x 0.5°	none	
Land cover	1° x 1°	none	
Land use	1° x 1°	none	
Soils	1° x 1°	none	
Soils	1° x 1°	none	
Wetlands	1° x 1°	none	
Wetlands	2° x 2.5°	none	
Drainage basins	2° x 2.5°	none	
Vegetation index	1° x 1°	none	
	Ocean		
Sea surface temperature	2° x 2°	monthly	
Sea surface temperature	[1024 x 512]	monthly	
Marine climate	2° x 2°	monthly	
Surface wind	2° x 2°	monthly	
Surface wind	[1080 x 540]	monthly	
Surface height	[1080 x 540]	monthly	
Temperature	1° x 1° x 33L	seasonal	
Salinity	1° x 1° x 33L	seasonal	
Oxygen	1° x 1° x 33L	seasonal	
Ocean color	[512 x 512]	seasonal	
ΔpCO ₂	2° x 2°	seasonal	

Assessment of global emission inventories for greenhouse gases

Table 3: Status assessment for greenhouse gas global emission inventories as concluded so far from the EU EVERGREEN project

Greenhouse gas	Anthropogenic except biomass burning		Biomass burning		Rice paddies and fermentation		Ocean
CO ₂	Asia Australia Canada + USA South America	PPGGPG	Asia Australia Canada + USA South America				Р
со	Asia Australia Canada + USA South America	PPGGPG	Р				Р
CH ₄	Asia Australia Canada + USA	PPGGPG	Р		Africa Asia Australia Canada + USA South America Europe		Р

- G = Good F = Fair
- P = Poor

Further development of emission inventories

Justification for further work (improvement)

- need for improved emission reduction plans
- need for better (more accurate and complete) emission inventories used for:
 - permitting and regulatory compliance,
 - urban and regional planning,
 - industrial technology change

Need for satellite observations

- relationships between satellite measurements and ground monitors
- use of satellite imagery for development of detailed land use data to support bottom-up emission estimates for windblown dust and agricultural sources, biomass smoke emissions, and others.

Need for an Operational Atmospheric Chemistry Monitoring Space mission

- to improve our understanding of anthropogenic and natural emissions of various gaseous and particulate pollutants, the subsequent tropospheric transport, and the impact on regional and global scale air quality and chemistry,
- to provide information on surrogate parameters used in emission inventorying,
- to improve the accuracy of some emission estimate methodologies, e.g. the smoke emission measurement methodologies using combined satellite and surface data.