Oppdragsgiver: Statens forurensningstilsyn
Direktoratet for naturforvaltning
Rapport nr.: 663/96
Deltakende institusjon: NILU

Overvåking av
 langtransportert luft og nedbør

Atmosfærisk tilførsel, 1995

- Statlig program for forurensningsovervåking

Det statlige programmet omfatter overvåking av forurensningsforholdene i
luft og nedbør grunnvann
vassdrag og fjorder
havområder
skog
Overvåkingen består i langsiktige undersøkelser av de fysiske, kjemiske og biologiske forhold.

Hovedmalsettingen med overvåkingsprogrammet er å dekke myndighetenes behov for informasjon om forurensningsforholdene med sikte på best mulig forvaltning av naturressursene.

Hovedmålet spenner over en rekke delmål der overvåkingen bl.a. skal:
gi informasjon om tilstand og utvikling av forurensningssituasjonen på kort og lang sikt.
registrere virkningen av iverksatte tiltak og danne grunnlag for vurdering av nye forurensningsbegrensende tiltak.
påvise eventuell uheldig utvikling i resipienten på et tidlig tidspunkt.
over tid gi bedre kunnskaper om de enkelte vannforekomsters naturlige forhold.

Sammen med overvåkingen vil det føres kontroll med forurensende utslipp og andre aktiviteter.

Overvåkingsprogrammet finansieres i hovedsak over statsbudsjettet. Statens forurensningstilsyn er ansvarlig for giennomføring av programmet.

Resultater fra de enkelte overvåkingsprosjekter publiseres i årlige rapporter.
Henvendelser vedrørende programmet kan i tillegg til de aktuelle institutter rettes til Statens forurensningstilsyn, Postboks 8100 Dep, 0032 Oslo, tlf. 22573400 .

Overvåking av langtransportert forurenset luft og nedbør Atmosfærisk tilførsel, 1995

Kjetil Tørseth

Utført etter oppdrag fra
Statens forurensningstilsyn og Direktoratet for naturforvaltning

Norsk institutt for luftforskning
Postboks 100
2007 Kjeller

Forord

Rapporten presenterer NILUs resultater fra overvåkingen av luft- og nedbørkjemi i 1995. Den atmosfæriske tilførselen av forurensende forbindelser overvåkes ved måling av kjemiske forbindelser i luft og nedbør. Forurensningene tilføres med nedbøren, og ved tørravsetning av gasser og partikler. Virkninger av atmosfærisk tilførsel på vannkvalitet, jord, vegetasjon og fauna, følges gjennom overvåking av vassdrag, feltforskningsområder, grunnvann og skogfelt. Resultatene fra den integrerte overvåkingen presenteres samlet i en egen rapport.

I rapporten inngår måledata fra alle norske bakgrunnsstasjoner drevet av NILU i 1995, i alt 40 stasjoner. Stasjonsnettet omfatter "Overvåking av langtransportert forurenset luft og nedbør", inkludert stasjonene som inngår i EMEP-prosjektet (European Monitoring and Evaluation Programme) og "Overvåkingsprogram for skogskader", begge etter oppdrag fra Statens forurensningstilsyn (SFT). Det siste programmet finansieres med midler fra Landbruksdepartementet og SFT, med Norsk institutt for skogforskning (NISK) som prosjektansvarlig. NILU utfører luft- og nedbørmålinger for prosjektet. Resultatene fra NILUs målinger rapporteres årlig i denne rapportserien. I rapporten inngår også måledata fra bakgrunnsstasjoner som inngår i andre prosjekter, blant andre sju nedbørstasjoner i "Program for terrestrisk naturovervåking" drevet etter oppdrag fra Direktoratet for naturforvaltning (DN). Også resultater fra NILUs nasjonale måleprogram, Nitrogen fra fjell til fjord og andre overvåkingsaktiviteter er inkludert.

Det er fra 1995 også inkludert overvåkingsresultater fra måleprogrammene CAMP (Comprehensive Air Monitoring Programme) under Oslo-Paris-kommisjonen, OSPARCOM (sporelementer og organiske forbindelser ved Lista), og AMAP (Arctic Monitoring and Assessment Programme, organiske forbindelser og sporelementer ved Ny -Ålesund/Zeppelinfjellet), som tidligere år har vært rapportert seperat til SFT. Resultatene fra disse aktivitetene er presentert i kapittel 5.

Følgende personer har bidratt til årsrapporten:
J. Schjoldager, K. Arnesen (ozondata), O. Røyset (uorganiske kjemiske analyser), J. Pacyna (CAMP-data), J.-E. Haugen (AMAP-data), A. Kibsgaard, O. Hermansen (databehandling), J.E. Hanssen og A. Semb.

Innhold

Side

Forord 3
Sammendrag 7
Summary in English 9
Atmosfærisk tilførsel, 1995 11

1. Hovedkomponenter i nedbør 13
1.1. Nedbør og klima 13
1.2. Tilførsel av forurensninger med nedbøren 14
1.3. Tidsutvikling 20
2. Sporelementer i nedbør 27
3. Innholdet av svovel- og nitrogenforbindelser i luft 32
3.1. Luftens innhold av forurensninger. 32
3.2. Tidsutvikling. 40
4. Målinger av bakkenært ozon 43
4.2. Grenseverdier 44
4.3. Resultater 46
4.3.1 Overskridelser av anbefalte luftkvalitetskriterier og tålegrenser for ozon 46
4.3.2 Overskridelser av grenseverdiene i EUs ozondirektiv. 51
4.3.3 Månedsmiddelverdier for ozon 53
4.3.4 Midlere døgnvariasjoner 53
4.3.5 Ozonepisoder 58
5. Overvåking av sporelementer og organiske forbindelser ved Lista (CAMP) og Ny - \AA lesund (AMAP) 58
5.1. CAMP (Lista) 58
5.2. AMAP (Ny -Ålesund) 59
5.3. Resultater fra Lista (CAMP) 59
5.3.1. Sporelementer i luft. 59
5.3.2. Sporelementer i nedbør 61
5.3.3. Organiske forbindelser i luft 62
5.3.4. Organiske forbindelser i nedbør 64
5.4. Resultater fra Ny -Ålesund (AMAP) 65
5.4.1. Sporelementer i luft. 65
5.4.2. Organiske forbindelser luft 65
Referanser 69
Tables, figures and appendices 75
Vedlegg A Resultater fra overvåking av luft- og nedbørkjemi 81
Vedlegg B Generelle opplysninger og måleprogram 177
Vedlegg C Prøvetaking, kjemiske analyser og kvalitetskontroll. 181

Sammendrag

Måling av kjemiske hovedkomponenter i nedbør ble i 1995 utført døgnlig ved 9 stasjoner og på ukebasis ved 26 stasjoner. I ukentlige og månedlige nedbørprøver fra 14 stasjoner er konsentrasjonene av sporelementene bly, kadmium og sink bestemt, og for 7 av disse stasjonene også innholdet av arsen, nikkel, kopper, krom og kobolt. Luftprøvetaking av svovel- og nitrogenkomponenter er utført døgnlig eller tre ganger hver uke (2,2 og 3 døgns prøvetaking) på 12 stasjoner. På Nordmoen og Birkenes bestemmes også innholdet av magnesium, kalsium, kalium, natrium og klorid i luft. Kontinuerlige målinger av ozonkonsentrasjoner i luft er utført på 14 stasjoner, inklusive stasjonene Langesund, Klyve og Haukenes, drevet av SFT's kontrollseksjon i Nedre Telemark.

Årsmiddelkonsentrasjonene av sterk syre, svovel- og nitrogenkomponenter i nedbøren var høyest langs kysten på Sørøstlandet og Sørlandet med høyeste verdier ved Ramnes, Lista, Lardal og Prestebakke. De laveste verdine ble målt fra Møre og Romsdal og nordover til Troms med minimum på Kårvatn. Våtavsetningen av sulfat, sterk syre og nitrogen (nitrat og ammonium) var størst langs kysten fra Aust-Agder til Hordaland, med høyeste verdier ved stasjonen Egersund. Milde vintrer tidlig på 1990-tallet har medført perioder med sterk vestlig vind på Vestlandet og på Sørlandet. Dette har medført episoder med høyt sjøsaltinnhold i nedbøren. Tilførslene av sjøsalter var imidlertid mindre i 1994 og 1995 enn i de foregående årene. Både i Sør- og Nord-Norge var middelkonsentrasjonene av samtlige hovedkomponenter i nedbør omtrent på samme lave nivå i 1995 som i 1994. Konsentrasjonene av sulfat i nedbør var i 1995 blant de laveste som er målt for de fleste stasjoner.

Innholdet av bly, kadmium og sink i nedbør er markert størst i Sør-Norge. Årsmiddelkonsentrasjonene har avtatt med $60-80 \%$ siden slutten av 1970 -årene. Det ble imidlertid målt et maksimum for innholdet av bly og sink i Sør-Norge i 1988, men deretter har det vært en markert reduksjon. Det høyeste innholdet av arsen, nikkel, kopper og kobolt måles i Sør-Varanger på grunn av utslipp i Russland.

Årsmiddelkonsentrasjonene av svoveldioksid og sulfat i luft var høyest langs kysten i Sør-Norge og i Finnmark. De markert høyeste verdiene av svoveldioksid ble målt i Sør-Varanger på grunn av svovelutslippene på Kola-halvøya. Det var for de fleste målesteder i Sør-Norge en markert nedgang i konsentrasjonene av svoveldioksid og sulfat sammenlignet med 1994. Innholdet av nitrogendioksid, nitrat+salpetersyre og ammonium+ammoniakk i luft var størst i Sør-Norge. Målingene viser at på en rekke målesteder kan lokale utslipp av ammoniakk ha innvirkning. Søgne utpeker seg med høye årsverdier for alle luftkomponenter, men bidrag fra lokale kilder har betydning, og særlig for ammoniakk. Det høye innholdet av nitrogendioksid ved Nordmoen og Søgne, især midtvinters, antas også delvis å skyldes lokale kilder (biltrafikk).

Som følge av internasjonale avtaler om reduksjoner i utslipp av svoveldioksid har konsentrasjonen av sulfat i nedbør avtatt med 35-50\% i Sør-Norge og $50-60 \%$ i Nord-Norge siden 1980. Luftens innhold av sulfat har avtatt med $40-60 \%$ fra

1980 til 1995. For svoveldioksid har reduksjonen vært $58-85 \%$ i Sør-Norge og over 65% i Nordland og Finnmark. Ved Ny-Ålesund har konsentrasjonene av sulfat og svoveldioksid i luft avtatt med hhv. 58% og 50%. Årsmiddelkonsentrasjonene av nitrat og ammonium i nedbør viser ingen markert tendens siden 1980. Heller ikke luftens innhold av nitrogendioksid, sum nitrat+salpetersyre og sum ammonium+ammoniakk viser noen markert tendens siden disse målingene startet i 1984. Våtavsetningen av sulfat har avtatt siden 1980. Våtavsetningen av sulfat i Sør-Norge var i 1995 på mange steder den laveste hittil grunnet lave konsentrasjoner og normale nedbørmengder. Våtavsetningen av nitrogenforbindelser var i 1995 noe lavere eller omtrent på samme nivå som i 1994.

Beregnet tørravsetning av svovel utgjorde i hele landet, unntatt Finnmark, 4-20\% av de totale avsetningene om vinteren og $17-31 \%$ i vekstsesongen 1995. I Finnmark var tørravsetningsandelen av svovel dominerende med 61-78\% av den totale avsetningen om vinteren og $42-70 \%$ i vekstsesongen. Dette skyldes høye luftkonsentrasjoner og lite nedbør. Tørravsetningen bidrar for nitrogenforbindelser relativt mer til totalavsetningen enn hva som er tilfellet for svovelforbindelser, især om sommeren.

Månedsmiddelverdiene av ozon varierer betydelig over året og viser oftest et maksimum i april eller mai. Konsentrasjonene overskrider ofte "kritiske belastningsgrenser" eller tålegrenser, som er utarbeidet av FNs $ø$ konomiske kommisjon for Europa (ECE). Tålegrensen på $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ som middelverdi over 7 timer kl. 09-16 i vekstsesongen (april-september) ble overskredet på alle målestedene untatt Svanvik, med de største overskridelsene i de sørlige delene av landet. Det var i 1995 færre "episodedøgn" (15 døgn) enn gjennomsnittlig de siste 10 åra ($18,9 \mathrm{~d} \varnothing \mathrm{gn}$). Med episodedøgn menes døgn med maksimal timemiddelverdi på minst $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ på ett sted eller minst $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ på flere steder. Høyeste timemiddelverdi var $160 \mu \mathrm{~g} / \mathrm{m}^{3}$ (Birkenes, 5 . mai 1995 kl .10). Det ble målt timemiddelverdier over $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ på to steder (Haukenes og Birkenes). Ingen målesteder hadde timemiddelverdier over $180 \mu \mathrm{~g} / \mathrm{m}^{3}$, som er EUs grenseverdi for melding til befolkningen.

Til tross for reduserte utslipp ser det ut til at nivået av bly og kadmium i luft i Sør-Norge (Lista) har øket siden 1991. Kvikksølvnivået i luft i Sør-Norge (Lista) viser en nedgang siden 1992, mens det har funnet sted en \varnothing kning i nedbør fra 1994 til 1995.

Det er observert en tydelig nedgang i konsentrasjonen av α-heksaklorsykloheksan i luft på Ny-Ålesund siden begynnelsen av $80-a ̊ r e n e$, som gjenspeiler redusert bruk av teknisk blanding av dette sprøytemiddelet.

Konsentrasjonen av polyklorerte bifenyler (PCB) i luft på Ny-Ålesund viser en signifikant $\varnothing \mathrm{kning}$ i begynnelsen av 1994 i de mest flyktige PCB-kongenerene som kan tyde på en lokal PCB-kilde.

Summary in English

The highest mean concentrations of sulphate, nitrate, ammonium and strong acid in precipitation occurred along the southern coast, with the highest values observed at the background stations Ramnes, Lista, Lardal and Prestebakke. Low values were measured from Møre og Romsdal and north to Troms, with the lowest observed values at Kårvatn.

The largest wet deposition (weighted mean concentration multiplicated by the precipitation amount) of sulphate, nitrogen components and strong acid occurred along the coast from Aust-Agder to Hordaland county.

The mean concentrations of sulphate, nitrate, ammonium and strong acid in precipitation were approximately at the same level in 1995 as in 1994 in the whole of Norway. For most sites the annual mean sulphate concentrations were among the lowest recorded for the period 1973-1995.

In 1995, the annual precipitation amounts were close to the normal at most places in Norway. However, there were strong variations in precipitation amounts over the year for the different regions.

The wet deposition of sulphate were in 1995, due to low concentrations and normal precipitation amounts, among the lowest ever measured at most stations in southern Norway. In the central and northern part of Norway the amounts deposited were about the same level as the previous years.

The annual mean concentrations of sulphate and strong acid in precipitation have been decreasing since the end of the 1970's. Since 1980 the content of sulphate has decreased by about $35-50 \%$ in southern Norway, and by about $50-60 \%$ in northern Norway. For the nitrogen components no obvious trend can be detected. The observed reductions in concentration levels are comparable with reported trends in emissions.

Warm winter climate with frequent winter storms early in the 1990's led to episodes with large amounts of sea-salts deposited along the western coast. In January 1993 a winter storm led to the most highest depositions of sea-salt ever recorded at the Norwegian sites. However, sea-salt deposition were less in 1994 and 1995 than during the previous years.

The highest content of particulate sulphate and of nitrogen components in air and in precipitation were measured in southern Norway. The mean concentrations of sulphur dioxide were highest in Finnmark, due to emissions from nickel smelters in Russia.

The annual mean concentrations of particulate sulphate in air have generally decreased to levels 40 to 60% lower than those measured in 1980. At Spitsbergen, annual mean concentrations of sulphur dioxide have decreased by 58%. The mean concentrations had similar trends in all parts of Norway since the late 1970's, with
a strong decrease till 1983, increase until 1987, and thereafter a dramatic decrease. The latter decrease is mainly due to reduced emissions. In addition mild and unstable winter seasons with prevailing winds from westerly directions the previous years has led to relatively few episodes with transport of stagnated, cold air from Europe, normally causing the strongest pollution episodes.

The dry deposition of sulphur compounds in 1995 is estimated to be $4-20 \%$ of the total deposition during the winter and $17-31 \%$ during the growing season in all counties except Finnmark. In Finnmark, the contribution of sulphur dry deposition to the total deposition were in about 61-78\% in winter and 42-70\% in summer, due to high air concentrations and small precipitation amounts. The contribution of dry deposition to the total deposition was higher for the nitrogen compounds than for sulphur.

The largest annual mean concentrations of lead, cadmium and zinc in precipitation were measured in Southern Norway. The levels of these trace elements have decreased by about $60-80 \%$ from 1978 to 1995. Temporary maxima for lead and zinc occurred in Southern Norway in 1988. From 1988 to 1994 the contents of zinc and lead decreased markedly at most of the measuring sites. However, the levels of zinc were in 1995 higher than during the last 3-4 years at most sites. In Sør-Varanger (Svanvik and Karpdalen) the levels of arsenic, copper, nickel and cobalt were relatively high due to emissions in Russia.

In 1995, ozone was measured at 14 sites in Norway. There was 15 days with maximum hourly average at least $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ at one site or at least $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ at several sites, which is less than the last 10 -year average (18,9 days). The highest hourly concentration was $160 \mu \mathrm{~g} / \mathrm{m}^{3}$ (Birkenes, 5. May, 1995). The ECE critical level of $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ as one-hour average was exceeded at two sites (Haukenes and Birkenes). The critical level of $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ as the 7 -h average (09-16) for the growing season (April-September) was exceeded at all sites but Svanvik in Finnmark county, with the largest excess in the southern part of the country. The monthly mean values of ozone varied over the year, with most maximum concentrations in April-May.

Despite reduced emissions the levels of lead and cadmium in air in southern Norway (Lista) have increased since 1991. The mercury concentration in air in southern Norway has decreased during the last four years, whereas the levels in precipitation have increased from 1994 to 1995.

A significant decrease has taken place in the air concentration of α-hexachlorocyclohexane in Ny - \AA lesund since the early 1980 s, reflecting the reduced application of the technical mixture of this insecticide.

The level of polychlorinated biphenyls (PCB) in Ny-Alesund air show a significant increase in the most volatile PCB-congeners in the begin of 1994, which may indicate a local PCB source.

Overvåking av langtransportert forurenset luft og nedbør

Atmosfærisk tilførsel, 1995

Målet for overvåking av luftens og nedbørens kjemiske sammensetning på norske bakgrunnsstasjoner er å registrere nivåer og eventuelle endringer i tilførselen av langtransporterte forurensninger. Bakgrunnsstasjonene er derfor plassert slik at de er minst mulig påvirket av nærliggende utslippskilder. NILU startet regelmessig prøvetaking av døgnlig nedbør i 1971, med de fleste stasjonene på Sørlandet. Senere er stasjonsnettet og måleprogrammet utvidet for å gi bedret informasjon om tilførseler i hele landet.

Etter avslutningen av SNSF-prosjektet ("Sur nedbørs virkning på skog og fisk") i 1979, ble det i 1980 startet et overvåkingsprogram i regi av Statens forurensningstilsyn (SFT). I 1995 omfattet dette programmet 11 stasjoner fordelt på alle landsdeler. Syv av disse stasjonene inngår i måleprogrammet for EMEPprosjektet (European Monitoring and Evaluation Programme). I 1985 ble det opprettet et eget "Overvåkingsprogram for skogskader", drevet med midler fra Landbruksdepartementet og Miljøverndepartementet. Norsk institutt for skogforskning (NISK) er prosjektansvarlig, og NILU utfører luft- og nedbørmålinger for prosjektet. Noen stasjoner i SFTs overvåkingsprogram er tilknyttet skogovervåkingsflater (Birkenes, Gulsvik (Langtjern), Treungen (Fyresdal), Osen, Vikedal (Nedstrand), Kårvatn og Tustervatn). Fra 1987 er midlene til disse målingene tildelt gjennom SFT, og NILUs måledata publiseres i denne rapportserien.

I "Program for terrestrisk naturovervåking" utfører NILU på oppdrag fra Direktoratet for naturforvaltning overvåkning av nedbørkjemi ved overvåkingsfelter i Solhomfjell, Møsvatn, Børgefjell (Namsvatn), Lund (Ualand), Dividalen (Øverbygd) og Gutulia (Valdalen). Program for terrestrisk naturovervåking er rettet mot effekter av langtransporterte forurensninger og skal følge bestands- og miljøgiftutvikling i dyr og planter. Integrerte studier av tilførsel, jord, vegetasjon og fauna, samt landrepresentative registreringer inngår. NILUs måledata i program for terrestrisk naturovervåking har tidligere vært publisert i egne overvåkingsrapporter (se f.eks Tørseth og Hermansen, 1995), men er fra 1995 rapportert i denne rapportserien. Denne rapporten er registrert som rapport nr. 67 i Program for terrestrisk naturovervåking.

En del stasjoner er tilknyttet andre prosjekter:
NILUs nasjonale måleprogram: Lista, Vatnedalen, Løken, Haukeland
Nitrogen fra fjell til fjord (instituttprogram): Egersund, Ramnes
Arktisk måleprogram (SFT): Ny-Ålesund, Zeppelinfjellet
Basisundersøkelse, Sør-Varanger (SFT): Karpdalen
HUMEX (NIVA): Førde (Skjervatjern)
Overvåking av bakkenær ozon (SFT): Jeløya,
SFTs kontrollseksjon i Nedre Telemark: Ozonmålestasjonene Langesund, Klyve, og Haukenes.

Figur 1: Norske bakgrunnsstasjoner i 1995.

CAMP (SFT): Sporelementer og organiske forbindelser ved Lista AMAP (SFT): Sporelementer og organiske forbindelser ved Ny-Ålesund/ Zeppelinfjellet

For nærmere opplysninger om stasjonene vises til SFT 416/90. Resultater fra overvåkingen er tidligere publisert i årsrapportene for 1980 (SFT 26/81), 1981(SFT 64/82), 1982 (SFT 108/83), 1983 (SFT 162/84), 1984 (SFT 201/85), 1985 (SFT 256/86), 1986 (SFT 296/87), 1987 (SFT 333/88), 1988 (SFT 375/89), 1989 (SFT 437/91), 1990 (SFT 466/91), 1991 (SFT 506/92), 1992 (SFT 533/93), 1993 (SFT 583/94) og 1994 (SFT 628/95).

1. Hovedkomponenter i nedbør

Nedbøranalysene er presentert på måneds- og årsbasis som veide middelkonsentrasjoner og som våtavsetninger og nedbørmengder i vedlegg A.1.1-A.1.21. Stasjonsopplysninger, måleprogram og prøvetakingsfrekvens er gitt i vedlegg B. 1 og B.2. Prøvetaking og kjemisk analysemetodikk er beskrevet i vedlegg C .

Veid middelkonsentrasjon er produktsummen av de døgnlige middelkonsentrasjoner og nedbørmengder (våtavsetning) dividert med den totale nedbørmengden i perioden. Alle sulfatverdier gitt i rapporten er korrigert for sjøsaltbidraget, som fortrinnsvis er beregnet på basis av forholdet mellom innholdet av natrium, eventuelt magnesium eller klorid, og sulfat i sjøvann.

Nedbørstasjonene Tveitdalen (ved Birkenes) og Kårvatn2 ble nedlagt 1. januar 1995.

1.1. Nedbør og klima

Både temperatur og nedbørmengder varierte mye i forhold til normalen for de enkelte måneder i 1995. Som vanlig var det også store forskjeller fra landsdel til landsdel over året (DNMI, 1995-96). For året som helhet jevnet det seg ut slik at årsverdiene viste bare relativt små avvik fra normalen. Årstemperaturen for Norge var 0,3-0,4 grader over normalen (1961-90) og omtrent på samme nivå som i 1994. Det var relativt varmest i Sør-Norge og relativt kaldest i Finnmark. I MidtNorge var årstemperaturen nær normalen. Årsnedbøren var over normalen fra Møre og nordover, på Vestlandet og enkelte mindre områder på \emptyset stlandet. Mest nedbør kom det i Nordland, mens det enkelte steder på indre \emptyset stlandet falt svært lite nedbør.

Over hele landet var både månedstemperaturene og månedsnedbøren over normalen i perioden januar til mars. Det var i januar uvanlig mange dager med kraftig vind langs kysten og i fjellet. Det ble i begynnelsen av mars registrert maksimale nedbørmengder for et døgn ved flere målestasjoner.

Månedsmiddeltemperaturene for april var gjennomgående nær normalen, mens de i mai var lavere enn normalt. Månedsnedbøren for april var over normalen i det meste av landet, men det var store lokale forskjeller. Grenseområdet Oppland/ Møre fikk over 300% av normale nedbørmengder. I mai var nedbørmengdene under normalen i det meste av Sør-Norge, over i de indre deler av Østlandet og nordover til Troms, og under i Troms og Finnmark.

Det var i juni omlag normale temperaturer over det meste av Sør-Norge og i Troms og Finnmark, mens det var kaldere enn normalt i Trøndelag og Nordland. Månedsnedbøren var over normalen over det meste av landet.

I perioden juli til august var det relativt varmest i Sør-Norge, mens temperaturene nord for Dovre var under normalen. Det var store lokale variasjoner i nedbørmengdene landsdelene imellom. Det falt relativt mest nedbør i Nord-Norge og på Vestlandet, mens det på Sørlandet falt lite nedbør.

I september var månedstemperaturen over eller omtrent lik normalen over det meste av landet. Månedsnedbøren var under normalen i det meste av landet, men over deler av $\emptyset_{\text {st- }}$ og Sørlandet falt det $200-300 \%$. I Aust-Agder satte flere stasjoner måneds- og døgnrekorder. I indre deler av Sør-Trøndelag falt det meget lite nedbør.

I oktober var månedstemperaturen i Sør-Norge den høyest målte siden 1961. Temperaturen var over normalen helt nord til Troms, og under lengre nord. Månedsnedbøren var over normalen på Vestlandet og nordover fra NordTrøndelag, og under over det meste av \emptyset st- og Sørlandet og Sør-Trøndelag.

I november og desember var månedstemperaturen under normalen over det meste av landet. Også månedsnedbøren var gjennomgående under eller rundt normalen.

1.2. Tilførsel av forurensninger med nedbøren

Tabell 1.1 viser at ioneinnholdet utenom sjøsalter avtar nordover fra Sør-Norge og er minst i fylkene fra Møre og Romsdal til Troms. Tabellen viser videre at alle landsdelene unntatt de indre delene av Østlandet og Finnmark tilføres betydelige mengder sjøsalter. Ved alle målesteder gav analysene overskudd av kationer, som trolig skyldes innhold av bikarbonat eller andre anioner av svake syrer som ikke bestemmes.

De høyeste årsmiddelkonsentrasjoner av sterk syre $\left(\mathrm{H}^{+}\right)$, sulfat, nitrat og ammonium ble i 1995 registrert på stasjonene Ramnes, Lista, Lardal og Prestebakke. Dette er noe lengre øst enn hva som har vært tilfelle de siste årene, og er trolig forårsaket av en høyere frekvens av lufttransport fra kildeområdene til denne delen av landet. For ammonium er som tidligere enkelte målestasjoner lokalt påvirket.

Tabell 1.1 viser også våtavsetningene av de viktigste nedbørkomponentene. Våtavsetningen av sulfat, nitrat, ammonium og sterk syre var størst langs kysten fra Aust-Agder til Hordaland. Våtavsetningen av sulfat på Sørlandet og Vestlandet var, på grunn av lavere konsentrasjoner, mindre i 1995 enn i 1994.

I figur 1.1 og 1.2 er regionale fordelinger av middelkonsentrasjoner og våtavsetninger vist på kart. Kartene er framstilt ved interpolasjon av målte konsentrasjoner ved kriging-interpolasjon (Journel og Huijbregts, 1981) til $50 \cdot 50 \mathrm{~km}^{2}$ ruter tilpasset EMEPs $150 \cdot 150 \mathrm{~km}^{2}$ rutenett.

Av figur 1.3 og tabell A.1.2 framgår det at månedsmiddelkonsentrasjonene av sulfat i nedbør i 1995 i Sør-Norge var høyest i mars-mai. Som normalt måles det høye konsentrasjoner i sommermåneder med små nedbørmengder. De månedlige våtavsetningene i Sør-Norge var gjennomgående mindre enn gjennomsnittet for perioden 1983-1993 de fleste steder. Nord for Dovre var de månedlige våtavsetningene omkring eller noe lavere enn gjennomsnittene for perioden 1983-1993.
Tabell 1.1:
Veide årsmiddelkonsentrasjoner og våtavsetning av nedbørkomponenter på norske bakgrunnsstasjoner, 1995. *: Korrigert for bidraget fra sjøsalt.

Figur 1.1: Middelkonsentrasjoner i nedbør og vaitavsetning av sulfat og sterk syre (pH) på norske bakgrunnsstasjoner i 1995.

Figur 1.2: Middelkonsentrasjoner i nedbør av nitrat, ammonium og natrium, og våtavsetning av total nitrogen (nitrat + ammonium) på norske bakgrunnsstasjoner i 1995.

Figur 1.3: Månedlige våtavsetninger og middelkonsentrasjoner av sulfat (sjøsaltkorrigert) på norske bakgrunnsstasjoner i 1995 og tidligere àr (middelverdier).

….... 1983-1993 \qquad 1995

Figur 1.3 forts.

Tabell A. 1.20 viser at våtavsetningene av sulfat tilført i løpet av de 10 døgnene med størst avsetning utgjør over 28% av de totale årlige våtavsetningene. Den høyeste prosentandelen i 1995 hadde stasjonene Osen (43\%) og Jergul (40\%). De største døgnlige våtavsetninger av sulfat ble målt til $38 \mathrm{mg} \mathrm{S} / \mathrm{m}^{2}$ ved hhv. Birkenes (15. mars 1995) og Skreådalen (16. januar 1995).

1.3. Tidsutvikling

Det var de fleste steder relativt små forskjeller i middelkonsentrasjonene av sterk syre $\left(\mathrm{H}^{+}\right)$, sulfat, nitrat og ammonium i 1995 sammenlignet med de foregående år. For mange stasjoner i Sør-og Vest-Norge var det imidlertid en markert nedgang i sulfatkonsentrasjonene. Konsentrasjonene à sulfat i nedbør var ved de fleste målesteder i Sør-Norge blant de lavest målte hittil. Konsentrasjonsnivåene av sulfat har vist en tydelig avtagende tendens siden slutten av syttitallet, mens det ikke er noen tydelig endring i innholdet av nitrogen. Disse observasjonene samsvarer godt med de rapporterte endringer i utslipp.

Figur 1.4 og vedlegg A.1.21 viser at fra 1994 til 1995 var det generelt en reduksjon i middelkonsentrasjonen av sjøsaltkorrigert sulfat i Sør- og SørvestNorge. For enkelte stasjoner i Sørøst-Norge var det imidlertid en svak økning sammenlignet med foregående år. Mange steder i Sør-Norge var årsmiddelkonsentrasjonen av sulfat den laveste målt hittil. Nedbørens innhold av nitrogenforbindelser var de fleste steder omtrent på samme nivå som de foregående år.

Årsmiddelkonsentrasjonene av sulfat og sterk syre $\varnothing \mathrm{kte}$ stort sett fram til slutten av 1970-årene, og har deretter avtatt (figur 1.4). Konsentrasjonene har avtatt mest i Sør-Norge, mens den relative reduksjonene \emptyset ker mot nord. Innholdet av nitrat og ammonium har endret seg lite siden 1970-årene. Av figur 1.5, med veide gjennomsnittsverdier for 7 representative målesteder på Sørlandet og Østlandet, fremgår det også at det har vært en generell reduksjon av nedbørens sulfatinnhold siden slutten av 1970 -årene, mens innholdet av nitrat og ammonium har gjennomgående vært på samme nivå.

Årsmiddelkonsentrasjonene av sulfat, nitrat, ammonium og magnesium er testet med hensyn på eventuelle trender for 12 målesteder med lange dataserier (tabell 1.2). Det er anvendt Mann-Kendall's test som er ikke-parametrisk og derfor uavhengig av fordelingen av data (Gilbert, 1987). Beregning av midlere endring i de årlige middelkonsentrasjoner er basert på lineær regresjon hvor helningskoeffisienten ligger innen Sen's ikke-parametriske helningsestimator (Gilbert, 1987).

Årsmiddelkonsentrasjonene av sulfat i nedbør har avtatt signifikant siden 1980 på alle målesteder unntatt Ny -Ålesund, med midlere reduksjoner mellom $0,013 \mathrm{mg}$ $S \cdot 1^{-1} \cdot \mathrm{ar}^{-1}$ og $0,045 \mathrm{mg} \mathrm{S} \cdot \mathrm{l}^{-1} \cdot \mathrm{ar}^{-1}$. I perioden 1980-1995 var den gjennomsnittlige reduksjon i sulfatkonsentrasjoner på fastlandsstasjonene mellom 36 og 62%.

Årsmiddelkonsentrasjonene av nitrat har ikke endret seg signifikant siden 1980 ved noen av målestasjonene (tabell 1.2, figur 1.4, figur 1.5). For ammonium har det vært en signifikant reduksjon ved 3 målestasjoner (Birkenes, Løken og

Jergul), mens det har vært en $\varnothing \mathrm{kning}$ ved Tustervatn. Endringer i konsentrasjonene av ammonium antas å kunne være påvirket av endring i bidrag fra lokale kilder.

Sjøsaltinnholdet i nedbøren (representert ved magnesium) viser signifikant \varnothing kning i perioden på kyststasjonen Lista. Innholdet av sjøsalter i nedbøren påvirkes sterkt av de meteorologiske forhold og varierer av den grunn mye fra år til år. I løpet av de første årene på nitti-tallet ble det målt høye konsentrasjoner av sjøsalter (se også A.1.21) grunnet ekstremt milde vintre med ustabile luftmasser fra vest. Høyt sjøsaltinnhold i nedbøren skyldes som regel sterk pålandsvind. I januar 1993 medførte eksempelvis sterke stormer på Sørvestlandet ekstremt høye konsentrasjoner og våtavsetninger av siøsalter flere steder (Hindar et al., 1995). Det var i 1994 og 1995 gjennomgående lavere innhold av sjøsalter i nedbøren enn de foregående 4-5 årene.

Tabell 1.2: \quad Midlere endringer av de årlige middelkonsentrasjoner av sulfat (sjøsaltkorrigert) i nedbør på norske bakgrunnsstasjoner, og målesteder med signifikante endringer for nitrat, ammonium og magnesium i perioden 1980-95.

		Endring, mg S/I pr. ár			Midlere\% endring for perioden	Signifikante endringer i perioden for		
Mâlested	Periode	Helning Median	Nedre grense	Øvre grense		NO_{3}	NH_{4}	Mg
Birkenes	1980-95	-0.037	-0.045	-0.027	-49		-	
Lista	1980-95	-0.026	-0.037	-0.017	-37			+
Skreádalen	1980-95	-0.013	-0.020	-0.009	-36			
Treungen	1980-95	-0.024	-0.029	-0.020	-40			
Vatnedalen	1980-95	-0.014	-0.019	-0.010	-46			
Laken	1980-95	-0.033	-0.039	-0.025	-49		-	
Gulsvik	1980-95	-0.028	-0.035	-0.019	-46			
Haukeland	1982-95	-0.013	-0.020	-0.007	-39			
Kárvatn	1980-95	-0.009	-0.013	-0.004	-58			
Tustervatn	1980-95	-0.010	-0.013	-0.006	-62		+	
Jergul	1980-95	-0.015	-0.023	-0.008	-47		-	
Ny -Ȧlesund	1981-95	lkke sign	kant end					

Det er anvendt Mann-Kendalls test ved 95\% konfidensnivả og Sen's estimater av trender ved 90\% konfidensnivá (Gilbert, 1987). Beregning av midlere endring for perioden er basert pà lineær regresjon hvor helningskoeffisienten ligger innen Sen's trend estimator. + = økning, = = reduksjon

Endringene av nedbørens innhold av svovel- og nitrogenkomponenter er i rimelig samsvar med de rapporterte endringer i utslipp i Europa. Utslippene av svoveldioksid er redusert med over 40\% fra 1980 til 1993 (Berge et al., 1995). Utslippsreduksjonen har vært størst i de vestlige land, men også i øst er reduksjonene på over 30%. Som følge av internasjonale avtaler forventes utslippene à reduseres ytterligere frem mot år 2000, 2005 og 2010. For nitrogenoksider er det foreløpig kun inngått avtale om at utslippene i 1994 ikke skal $\varnothing \mathrm{ke}$ i forhold til de nasjonale utslipp i 1987. Fra 1980 til 1993 var det imidlertid i Vest-Europa en reduksjon i utslippene av nitrogenoksider på ca. 10% (Berge et al., 1995). Utslippene av ammoniakk har også økt siden 1950 -årene i sammenheng med veksten i landbruksproduksjonen og et mer intensivt husdyrhold i Europa. Fra 1975 er imidlertid $\varnothing \mathrm{kningen}$ liten (OECD, 1982).

Flere forhold giør det vanskelig å spore reduksjoner i utslipp til målte konsentrasjoner og avsetninger. Av størst betydning er de meteorologiske forhold, som bestemmer spredning av forurensninger til atmosfæren, kjemiske transformasjoner, transport og avsetning av forurensninger. Store variasjoner i konsentrasjoner og avsetninger kan være forårsaket av luftmassenes opphav, vindstyrke, nedbørmengde og varierende topografi.

Våtavsetningen av sulfat var i 1995 omtrent på samme nivå som i 1993 på de fleste stasjoner i Sør-Norge og mange steder de lavest målte siden NILU startet overvåking av luft og nedbørkvalitet tidlig på 70-tallet (figur 1.5 og figur 1.6). I slutten av 1980-årene var årsnedbøren i Sør-Norge til dels stor og dette medførte at våtavsetningen av sulfat avtok relativt mindre enn middelkonsentrasjonene i denne perioden. I Midt- og Nord-Norge var våtavsetningene av sulfat i 1995 omtrent på samme nivå som de foregående år.

Figur 1.4: Veide årsmiddelkonsentrasjoner av sulfat (sjøsaltkorrigert), nitrat, ammonium og pH-middelverdier i nedbør på norske bakgrunnsstasjoner, 1973-1995.

Figur 1.4 forts.

Figur 1.4 forts.

Figur 1.5: Veide årsmiddelkonsentrasjoner av sulfat (sjøsaltkorrigert), nitrat og ammonium, gjennomsnittlige årlige nedbørmengder og våtavsetninger av sulfat og sum (nitrat+ammonium) 1974-1995 for 7 representative stasjoner på Sørlandet og Østlandet: Birkenes, Lista, Skreådalen, Vatnedalen, Treungen, Gulsvik og Løken.

Figur 1.6: Årlige våtavsetninger av sulfat på norske EMEP-stasjoner, 19731995.

2. Sporelementer i nedbør

Innholdet av bly, sink og kadmium i nedbør er markert størst i Sør-Norge. Årsmiddel-konsentrasjonene har avtatt med 60-80\% siden 1978. I Sør-Varanger måles det høyt innhold av arsen, nikkel, kopper og kobolt på grunn av utslipp i Russland.

Fra februar 1980 har det vært bestemt bly, sink og kadmium i ukentlige nedbørprøver på de fem stasjonene Birkenes, Narbuvoll (til 1987), Osen (fra 1988), Kårvatn og Jergul, som et ledd i SFT's overvåkingsprogram. Slike målinger er dessuten utført på Nordmoen i Akershus fra oktober 1986 og på Svanvik i SørVaranger fra mars 1987 som ledd i "Overvåkingsprogram for skogskader" (Venn et al., 1995). I tilknytning til "Program for terrestrisk naturovervåkning i Norge" utfører NILU månedlig analyse av bly, kadmium og sink i månedsprøver fra stasjonene Ualand, Solhomfjell, Møsvatn, Valdalen, Namsvatn og Øverbygd.

Nedbørprøvene fra Svanvik, Ualand, Solhomfjell, Møsvatn, Valdalen, Namsvatn og Øverbygd analyseres også med hensyn på nikkel, arsen, kopper, kobolt og krom.

For komponentene Ni, As, Co og Cr er ofte konsentrasjonene lavere enn deteksjonsgrensene. Deteksjonsgrensene er bestemt som 3 ganger standard avvik av blindprøveverdier. For prøver der konsentrasjonene er lavere enn deteksjons-
grensen er det benyttet halve deteksjonsgrensen ved beregning av veide middelkonsentrasjoner og ved beregning av våtavsetning. Dersom den beregnede verdi er lavere enn den respektive deteksjonsgrensen, er den veide middelverdi satt mindre enn deteksjonsgrensen. Årsmiddelkonsentrasjoner og våtavsetninger bestemt for elementer der en eller flere måneder ligger lavere enn deteksjonsgrensen må av den grunn ikke benyttes ukritisk.

Opplysninger om prøvetaking og analysemetoder er gitt i vedlegg C. Årsverdiene er gitt i tabell 2.1 og 2.2, og målingene er presentert som veide middelkonsentrasjoner og våtavsetninger på måneds- og årsbasis i vedlegg A.2.1-A.2.17.

Tabell 2.1 viser at de høyeste årsmiddelkonsentrasjoner av bly, kadmium og sink ble målt på stasjonene Birkenes, Lista, Solhomfjell, Nordmoen og Osen. Det høyeste nivået av kadmium, nikkel, arsen, kobolt og kopper ble imidlertid målt i Øst-Finnmark (Karpdalen og Svanvik). Dette er også vist ved tidligere landsomfattende moseanalyser (Rühling et al., 1987, 1992). Årsmiddelkonsentrasjoner av krom er de fleste \emptyset vrige stasjoner under deteksjonsgrensen ($0,2 \mu \mathrm{~g} \cdot \mathrm{l}^{-1}$). Årsmiddelkonsentrasjonen av kopper i Svanvik var i $199517,37 \mu \mathrm{~g} \cdot \mathrm{l}^{-1}$ mot 1.05 $\mu \mathrm{g} \cdot \mathrm{l}^{-1}$ som maksimum i Sør-Norge (Lista). De høye verdiene i Sør-Varanger skyldes store industriutslipp på Kola-halvøya.

Tabell 2.2 viser at våtavsetningen av bly, kadmium og sink i 1995 var størst på Birkenes, Ualand, Lista og Solhomfjell. Våtavsetningene av nikkel, arsen, kopper og kobolt var størst i \emptyset st-Finnmark.

I figur 2.2 og vedlegg A.2.17 er sammenstilt årsmiddelkonsentrasjonene fra 1980 til 1995, og tidligere data fra 1976 (Semb, 1978) og fra 1978 (Hanssen et al., 1980). Blyinnholdet i nedbør har avtatt med $60-80 \%$ siden 1978. I 1988 hadde imidlertid blyinnholdet et maksimum, og årsverdiene har deretter avtatt sterkt i hele landet.

Innholdet av sink har avtatt med ca. 70% siden 1978. På Birkenes avtok årsmiddelkonsentrasjonene markert fra 1978 til 1981, men har deretter stort sett vært \varnothing kende til 1988. Kårvatn og Jergul viser ingen markert tendens før 1988. Sink-innholdet har avtatt på alle målestedene etter 1988, men nivåene i 1994 og 1995 var for de fleste lokaliterer noe høyere enn i 1991-1993, og var omtrent på samme nivå som i 1990.

Kadmiuminnholdet har avtatt med $50-80 \%$ siden slutten av 1970-årene, og endringen har vært størst på Birkenes. Ellers utpeker seg enkelte høye årsverdier (Birkenes 1982, Osen 1988), som kan skyldes lokale kilder, eventuelt kontaminering.

Tabell 2.1: Årlige veide middelkonsentrasjoner ($\mu \mathrm{g} / \mathrm{l}$) av tungmetaller på norske bakgrunnsstasjoner, 1995.

Stasjon	Pb	Cd	Zn	Ni	As	Cu	Co	Cr
Birkenes	2,16	0,049	5,99					
Lista	2,34	0,056	8,55	0,35	0,36	1,05		0,76
Solhomfiell	2,01	0,067	6,01	0,67	0,22	1,03	0,03	<0.20
Masvatn	0,86	0,025	2,81	0,31	<0.10	0,89	0,01	0,28
Nordmoen	2,03	0,041	5,18					
Osen	2,10	0,073	8,82					
Valdalen	1,38	0,028	4,62	0,42	<0.10	0,78	0,02	<0.20
Ualand	1,71	0,032	3,32	0,23	<0.10	0,30	0,01	$<0,20$
Karvatn	0,23	0,013	1,16					
Namsvatn	0,49	0,014	2,28	0,27	<0.10	0,18	0,01	$<0,20$
Øverbygd	0,38	0,014	2,27	0,35	<0.10	0,45	0,02	<0.20
Jergul	0,79	0,036	3,45					
Svanvik	1,70	0,110	5,36	17,35	1,82	17,37	0,60	0,38
Karpdalen	1,52	0,066	3,82	10,33	1,01	7,14	0,37	0,40

Tabell 2.2: Årlige våtavsetninger ($\mu \mathrm{g} / \mathrm{m}^{2}$) av tungmetaller på norske bakgrunnsstasjoner, 1995.

Stasjon	Pb	Cd	Zn	Ni	As	Cu	Co	Cr
Birkenes	2986	67	8272					
Lista	2102	50	7683	317	327	940		682
Solhomfjell	2108	70	6293	705	234	1083	33	154
Mrsvatn	515	15	1682	189	50	533	9	165
Nordmoen	1573	32	4008					
Osen	1252	43	5256					
Valdalen	782	16	2622	241	53	441	12	90
Ualand	3175	59	6161	433	141	557	23	190
Kárvatn	373	21	1893					
Namsvatn	567	16	2636	313	66	203	12	115
Øverbygd	236	9	1408	217	31	281	12	74
Jergul	314	14	1366					
Svanvik	651	42	2046	6622	696	6631	227	144
Karpdalen	601	26	1517	4096	400	2832	149	157

—— BIRKENES ———OSEN - - - KÅRVATN ———JERGUL

Figur 2.1: Månedlige veide middelkonsentrasjoner av bly, kadmium og sink i nedbør på norske bakgrunnsstasjoner, 1995.

Figur 2.2: Årlige middelkonsentrasjoner av bly, kadmium og sink i nedbør på norske bakgrunnsstasjoner i 1976, august 1978-juni 1979, 1980 (februar-desember) og 1981-1995.

3. Innholdet av svovel- og nitrogenforbindelser iluft

Arsmiddelkonsentrasjonene av svoveldioksid og sulfat i luft var høyest langs kysten i Sør-Norge og i Finnmark. De markert høyeste verdiene av svoveldioksid ble målt i Sør-Varanger på grunn av svovelutslippene på Kola-halvøya. Det var for de fleste målesteder i Sør-Norge en markert nedgang i konsentrasjonene av svoveldioksid og sulfat sammenlignet med 1994. Innholdet av nitrogendioksid, nitrat+salpetersyre og ammonium+ammoniakk i luft er størst i Sør-Norge.

Sulfatkonsentrasjonene i luft har i middel avtatt med omlag 40-60\% fra 1980 til 1995. Konsentrasjonene av svoveldioksid er redusert med 58-85\% i Sør-Norge og med over 65\% i Nordland og Finnmark. Ved Ny-Ålesund har konsentrasjonene av sulfat og av svoveldioksid avtatt med hhv. 58 og 50%. Reduksjonene samsvarer med rapporterte endringer i utslipp. Innholdet av nitrogenforbindelser i luft viser ingen markerte tendenser siden disse målingene kom med i overvåkingsprogrammet i 1984.

Det ble utført luftprøvetaking av svovel og nitrogenforbindelser i bakgrunnsområder på 12 steder i 1995. Stasjonene inngår i "Program for overvåking av langtransportert forurenset luft og nedbør", "Overvåkingsprogram for skogskader", samt "Arktisk måleprogram" ved Ny-Ålesund/Zeppelinfjellet. Prøvetakingen utføres døgnlig eller tre ganger ukentlig (2, 2 og 3 døgns prøvetaking). På Birkenes og Nordmoen bestemmes også innholdet av kalsium, kalium, natrium, magnesium og klorid i luft.

Målingene av svoveldioksid, sulfat, sum nitrat og sum ammonium ved stasjonene Valle, Lardal og Nausta, og målingene av nitrogendioksid ved Prestebakke og Zeppelinfjellet ble avsluttet 1. januar 1995.

Måleprogrammet for de forskjellige stasjonene er presentert i vedlegg B.2, prøvetaking og analysemetoder i vedlegg C, og måleresultater på måneds- og årsbasis i vedlegg A.3.1-A.3.10.

3.1. Luftens innhold av forurensninger

Tabellene 3.1 til 3.5 viser data for luftkonsentrasjonene på hver stasjon. Dataene fra stasjonene med 2, 2 og 3 døgns prøvetaking av $\mathrm{SO}_{2}, \mathrm{SO}_{4},\left(\mathrm{NO}_{3}{ }^{-}+\mathrm{HNO}_{3}\right)$, $\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$ (se vedlegg C) er ikke direkte sammenlignbare med stasjonene med døgnlige data, bortsett fra middelverdiene.

Den markert høyeste årsmiddelverdien av svoveldioksid i 1995 og den høyeste maksimumsverdien (hhv. 5,07 og $62,2 \mu \mathrm{~g} \mathrm{~S} \cdot \mathrm{~m}^{-3}$) ble registrert på Svanvik i SørVaranger. Dette skyldes utslippskilder på Kola-halvøya i Russland. Til sammenligning ble den høyeste årsmiddelkonsentrasjonen av svoveldioksid i Sør-Norge målt til $0,51 \mu \mathrm{~g} \mathrm{~S} \cdot \mathrm{~m}^{-3}$ ved Søgne. Også de høyeste konsentrasjonene av partikulært sulfat, og "sum nitrat" ble i 1995 målt i Søgne. Søgne antas å påvirkes både av tilførsel fra Kristiansand-området og lokale kilder i tillegg til langtransportert forurensning.

Nordmoen hadde i 1995 høyeste årsmiddelverdi og døgnmiddelverdi av nitrogendioksid (hhv. 2,25 og $14,31 \mu \mathrm{~g} \mathrm{~N} \cdot \mathrm{~m}^{-3}$). Månedsverdiene for NO_{2} var høyest i vintermånedene, særlig på Nordmoen og i Søgne, noe som sannsynligvis skyldes lokale utslipp, spesielt fra biltrafikk, og meteorologiske forhold.

Høyest årsmiddelverdi og døgnmiddelverdi for "sum ammonium" hadde Skreådalen med hhv. $1,45 \mathrm{og} 8,86 \mu \mathrm{~N} \cdot \mathrm{~m}^{-3}$). Det ble også målt høye døgnmiddelkonsentrasjoner ved stasjonene Søgne, Tustervatn og Svanvik og skyldes trolig lokale ammoniakkutslipp.

Årsmiddelkonsentrasjonene av svoveldioksid på Zeppelinfjellet lå omtrent på samme nivå som de minst forurensede stasjoner på fastlandet (Kårvatn og Tustervatn). De \varnothing vrige årsverdiene på Zeppelinfjellet var lavere enn på fastlandet.

Figur 3.1 viser at SO_{2}-verdiene gjennomgående var høyest i vintermånedene. Sulfatverdiene var i hele landet høyest i januar og mars og om sommeren (juli). I Sør-Norge ble de høyeste nivåene av "sum nitrat" ($\mathrm{HNO}_{3}+\mathrm{NO}_{3}$) målt i oktober. Lengre nord er det ingen tydelig variasjon gjennom året. "Sum ammonium" $\left(\mathrm{NH}_{3}+\mathrm{NH}_{4}{ }^{+}\right)$viser høyeste nivå i vår- og sommermånedene. Ved målestedene Birkenes, Søgne, Skreådalen, Tustervatn og Svanvik måles det relativt høye månedsverdier i vår og sommermånedene. Dette skyldes lokale ammoniakkutslipp, og det er mulig at lokale utslipp også bidrar på en del av de \emptyset vrige målestedene om sommeren.

Konsentrasjonene av $\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}$ er som regel vesentlig høyere enn av $\mathrm{NO}_{3}{ }^{-}+\mathrm{HNO}_{3}$, mens middelkonsentrasjonene av nitrat og ammonium i nedbør er omtrent like store. I tillegg til ammoniakk fra lokale kilder kan denne forskjellen også ha sammenheng med at tørravsetningshastigheten av HNO_{3}-gass og av nitrataerosoler (en stor del som NaNO_{3}) er større enn for ammoniumsulfataerosoler (mindre partikkeldiameter). Dette kan føre til at konsentrasjonene av $\mathrm{NO}_{3}{ }^{-}$og HNO_{3} blir vesentlig lavere ved bakken enn i den frie troposfæren, og i større grad enn for $\mathrm{NH}_{4}{ }^{+}$og NH_{3}. I tillegg kan utvasking av nitrat med nedbør være mer effektiv enn av ammonium, samtidig som oppsamling av store nitratpartikler er vanskelig og kan medføre underestimering av nitratkonsentrasjoner.

I tabell 3.6 er presentert estimater av de totale tørravsetningene av svovel- og nitrogenkomponenter og målte våtavsetninger, separat for vekstsesongen maioktober (sommer) 1995 og for vintermånedene januar-april og novemberdesember 1995. Tørravsetningen er kalkulert på basis av middelkonsentrasjonene i luft av $\mathrm{SO}_{2}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{NO}_{2}$, sum nitrat $\left(\mathrm{NO}_{3}{ }^{-}+\mathrm{HNO}_{3}\right)$ og sum ammonium $\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$ og avsetningshastigheter gitt i tabellteksten (Dovland og Eliassen, 1976; Dollard og Vitols, 1980; Fowler, 1980; Garland, 1978; Voldner og Sirois, 1986; Hicks et al., 1987). I "sum nitrat" antas HNO_{3} å bidra med 25% og $\mathrm{NO}_{3}{ }^{-}$ med 75%, og i "sum ammonium" antas NH_{3} å bidra med 8% og $\mathrm{NH}_{4}{ }^{+}$med 92% (Ferm, 1988).

Avsetningshastighetene av gasser og partikler er sterkt variable og usikre størrelser. Avsetningen av partikler ($\mathrm{SO}_{4}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NH}_{4}{ }^{+}$) tiltar med vindhastigheten og med bakkens ruhet (skogdekning etc.). Avsetningen av gasser (SO_{2},
$\mathrm{NO}_{2}, \mathrm{HNO}_{3}, \mathrm{NH}_{3}$) avhenger av den fotosyntetiske aktivitet i vegetasjonen, samt av overflaten (vann, fjell, etc.). Avsetningen er for de fleste gasser langt større på våte overflater enn når flatene er tørre. Om vinteren er avsetningen liten på grunn av lav biologisk aktivitet i vegetasjonen, samtidig som bakken er dekket av snø og is. Det stabile luftlaget nær bakken om vinteren reduserer dessuten transporten av forurensninger ned mot bakken.

Figur 3.2 viser at våtavsetningen bidrar mest til den totale avsetningen i alle landsdeler, unntatt i Finnmark. De store tørravsetningsbidragene av nitrogenforbindelser på Birkenes, Søgne og Skreådalen skyldes delvis lokale ammoniakkutslipp, mens bidraget ved Nordmoen, Søgne og Prestebakke skyldes trolig lokale utslipp av nitrogenoksider fra biltrafikk.

Av tabell 3.6 framgår det at tørravsetningen av svovel- og nitrogenkomponenter er beregnet til å være markert større om sommeren enn om vinteren i alle landsdelene. Bidraget av tørravsatt svovel til den totale avsetming var $17-31 \%$ om sommeren og $4-20 \%$ om vinteren i alle landsdeler unntatt Finnmark. I Finnmark er tørravsetningsbidraget meget høyt særlig i Svanvik på grunn av høye luftkonsentrasjoner og lite nedbør. Tørravsetningen bidrar for nitrogenkomponenter relativt mer til totalavsetningen enn hva som er tilfelle for svovelforbindelser (unntatt Jergul og Svanvik), især om sommeren.

Tabell 3.1: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av SO_{2} i luft på norske bakgrunnsstasjoner i 1995.
Eks.: På Birkenes var 75\% av SO_{2}-konsentrasjonene lavere enn $0,37 \mu \mathrm{~g} / \mathrm{m}^{3}$.

Stasjon	Antall døgn	$\mathrm{SO}_{2}\left(\mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{\mathbf{3}}\right)$					
		50\%	$\begin{gathered} \text { sentilk } \\ 75 \% \end{gathered}$	90\%	Maksimumkonsentrasjon	Dato	Ársmiddelkonsentrasjon
Birkenes	360	0,12	0,37	0,71	6,47	15.mar	0,31
Søgne	347	0,32	0,64	1,00	4,00	6.jan	0,51
Skreádalen	358	0,04	0,13	0,41	10,79	6.jan	0,22
Prestebakke	360	0,18	0,40	0,72	7,00	18.jan	0,39
Nordmoen	363	0,08	0,13	0,40	3,77	18.jan	0,19
Gulsvik	365	0,05	0,10	0,22	6,57	18.jan	0,20
Osen	354	0,04	0,09	0,27	7,11	20.jan	0,19
Karvatn	364	0,03	0,06	0,14	6,11	19.jan	0,16
Tustervatn	365	0,03	0,08	0,26	4,10	23.jan	0,16
Jergul	362	0,07	0,27	1,37	16,68	5.mar	0,59
Svanvik	365	1,69	6,34	14,39	62,20	2.jan	5,07
Zeppelinfj.	363	0,05	0,10	0,40	2,81	20.des	0,15

Tabell 3.2: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner ($1-3$ døgn, se vedlegg C) av sulfat i luft på norske bakgrunnsstasjoner i 1995.

Stasjon	Antall døgn	$\mathrm{SO}_{4}\left(\mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3}\right)$					
		50\%	sentilko 75%	90\%	Maksimumkonsentrasjon	Dato	Årsmiddelkonsentrasjon
Birkenes	360	0,33	0,78	1,56	3,70	14.jul	0,58
Søgne	347	0,46	1,02	1,51	3,30	3.mai	0,72
Skreádalen	358	0,23	0,47	1,17	2,45	2.aug	0,43
Prestebakke	360	0,48	0,90	1,45	2,60	16.0kt	0,66
Nordmoen	363	0,34	0,68	1,38	2,32	21.aug	0,54
Gulsvik	365	0,20	0,47	0,98	2,52	21.aug	0,38
Osen	354	0,19	0,46	1,09	2,49	29.jul	0,38
Kärvatn	364	0,11	0,26	0,58	1,66	$9 . m$ mar	0,22
Tustervan	358	0,14	0,29	0,73	3,44	29.jul	0,28
Jergul	362	0,18	0,44	0,94	2,12	18.mar	0,34
Svanvik	365	0,34	0,74	1,05	2,14	25.jan	0,48
Zeppelinfj.	363	0,11	0,25	0,40	1,56	14.aug	0,17

Tabell 3.3: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av NO_{2} i luft på norske bakgrunnsstasjoner i 1995.

Stasjon	Antall døgn	$\mathrm{NO}_{2}\left(\mu \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}\right)$					
		50\%	$\begin{aligned} & \text { sentilk } \\ & 75 \% \end{aligned}$	90\%	Maksimumkonsentrasjon	Dato	Ársmiddelkonsentrasjon
Birkenes	356	0,45	0,78	1,47	7,84	$26 . \mathrm{nov}$	0,68
Søgne	360	0,95	1,38	2,20	8,74	$26 . \mathrm{nov}$	1,19
Skreádalen	365	0,33	0,50	0,87	3,75	17.jan	0,46
Prestebakke							
Nordmoen	363	1,60	3,16	4,83	14,31	21.des	2,25
Gulsvik							
Osen	362	0,25	0,57	0,97	3,78	$22 . \mathrm{nov}$	0,41
Kàrvatn	363	0,20	0,30	0,54	1,33	24.des	0,26
Tustervatn	364	0,11	0,20	0,32	0,98	17.jan	0,16
Jergul	357	0,13	0,21	0,36	0,68	20.mar	0,16
Svanvik	355	0,36	0,64	1,48	4,78	9.nov	0,58
Zeppelinfj.							

Tabell 3.4: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av sum nitrat og salpetersyre i luft på norske bakgrunnsstasjoner i 1995.

Stasjon	Antall dagn	$\mathrm{NO}_{3}+\mathrm{HNO}_{3}\left(\mu \mathrm{~g} \mathrm{~N} / \mathrm{m}^{\mathbf{3}}\right)$					
		50\%	75\%	90\%	Maksimumkonsentrasjon	Dato	Årsmiddel- konsentrasjon
Birkenes	360	0,17	0,37	0,71	3,05	24.0kt	0,30
Søgne	347	0,27	0,53	1,06	2,97	23.0kt	0,43
Skreádalen	358	0,13	0,25	0,50	2,11	$3 . \mathrm{mai}$	0,22
Prestebakke	353	0,20	0,35	0,65	2,70	23.okt	0,31
Nordmoen	363	0,20	0,35	0,59	1,10	29.des	0,27
Gulsvik	365	0,13	0,22	0,34	0,85	8.mar	0,17
Osen	348	0,10	0,19	0,31	0,94	$22 . n 0 v$	0,15
Kárvatn	364	0,07	0,12	0,21	0,45	3.jul	0,10
Tustervatn	356	0,06	0,10	0,18	0,67	14.jun	0,09
Jergul	362	0,08	0,14	0,23	1,11	11.jul	0,11
Svanvik	365	0,08	0,12	0,19	0,32	17.mar	0,10
Zeppelinfj.	363	0,05	0,09	0,19	0,99	31.jul	0,08

Tabell 3.5: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av sum ammonium og ammoniakk i luft på norske bakgrunnsstasjoner i 1995.

Stasjon	Antall døgn	$\mathrm{NH}_{4}+\mathrm{NH}_{3}\left(\boldsymbol{\mu g ~ N / m}{ }^{\mathbf{3}}\right.$)					
		50\%	sentilko 75%	90\%	Maksimumkonsentrasjon	Dato	Årsmiddelkonsentrasjon
Birkenes	360	0,25	0,64	1,53	4,46	24.0kt	0,54
Søgne	347	0,70	1,30	2,19	7,69	23.0kt	0,98
Skreâdalen	357	1,19	1,81	2,84	8,86	4.jun	1,45
Prestebakke	358	0,42	0,85	1,73	3,91	23.0kt	0,67
Nordmoen	363	0,36	0,75	1,28	2,16	21.aug	0,54
Gulsvik							
Osen	354	0,17	0,37	0,81	2,08	29.jul	0,31
Kárvatn	361	0,19	0,44	0,90	2,83	7.jun	0,36
Tustervatn	362	0,43	0,79	1,23	5,31	6.okt	0,62
Jergul	362	0,09	0,16	0,36	1,30	30.jul	0,15
Svanvik	365	0,36	0,53	0,79	5,65	7.jun	0,49
Zeppelinfj.	363	0,08	0,13	0,18	1,22	14.aug	0,10

Tabell 3.6: Beregnet tørravsetning og målt våtavsetning av svovel- og nitrogenforbindelser pa norske bakgrunnsstasjoner i 1995.

Tørravsetning $=$ målt midlere luftkonsentrasjon \cdot antatt tørravsetningshastighet.
Tørravsetningshastigheter: $\mathrm{SO}_{2}: 0.1 \mathrm{~cm} / \mathrm{s}$ (vinter) $-0.7 \mathrm{~cm} / \mathrm{s}$ (sommer). $\mathrm{SO}_{4}: 0.2-0.6 \mathrm{~cm} / \mathrm{s}$, $\mathrm{NO}_{2}: 0.1-0.5 \mathrm{~cm} / \mathrm{s}, \mathrm{HNO}_{3}: 1.5-2.5 \mathrm{~cm} / \mathrm{s}, \mathrm{NO}_{3}: 0.2-0.6 \mathrm{~cm} / \mathrm{s}, \mathrm{NH}_{4}: 0.2-0.6 \mathrm{~cm} / \mathrm{s}, \mathrm{NH}_{3}: 0.1-0.7 \mathrm{~cm} / \mathrm{s}$. Sum nitrat $=25 \% \mathrm{HNO}_{3}+75 \% \mathrm{NO}_{3}$. Sum ammonium $=8 \% \mathrm{NH}_{3}+92 \% \mathrm{NH}_{4}$.
$\%$-verdiene angir tøravsetningens bidrag til den totale avsetning for vinter (V) og sommer (S).
Sommer $=$ mai-oktober, vinter $=$ januar-april og november-desember .

Stasjon	Svovel (mg S/m²)						Nitrogen (mg N/m²)					
	Tørravsetning vinter sommer		Vátavsetning vinter sommer		\% terravsetning		Tørravsetning		Vâtavsetning		\% trrravsetning	
Birkenes	20	95	411	333	5	22	61	152	775	499	7	23
Søgne	28	123	336	398	8	24	93	257	639	562	13	31
Skreådalen	15	66	339	285	4	19	65	231	557	454	10	34
Prestebakke	25	101	190	296	12	26	-	-	331	421	-	-
Nordmoen	19	69	151	263	11	21	119	160	234	313	34	34
Gulsvik	16	48	114	241	12	17	-	-	215	303	-	-
Osen	16	46	64	213	20	18	36	72	103	223	26	25
Kárvatn	11	28	72	62	13	31	20	87	83	103	19	46
Tustervatn	13	34	51	85	20	29	22	110	103	176	18	38
Jjergul	25	69	16	94	61	42	18	44	18	63	50	41
Svanvik	107	535	30	227	78	70	43	90	37	93	54	49
Zeppelinfj.	12	13	42	39	22	25	-	-	29	38	-	-

For Zeppelinfjellet er vảtavsetningene pả Ny-Ålesund anvendt.
——SO2-S
--- SO4-S
.......NO2-N
$\rightarrow\left(\mathrm{NO}_{3}+\mathrm{HNO} 3\right)-\mathrm{N}$
\rightarrow - (NH4 + NH3) - N

Figur 3.1: Mä̉nedlige middelkonsentrasjoner av svoveldioksid, partikulart sulfat, nitrogendioksid, (ammonium+ammoniakk) og (nitrat+salpetersyre) i luft på norske bakgrunnsstasjoner i 1995.

Figur 3.1 forts.

Figur 3.2: \quad Total avsetning (våt- og tørravsetning) av svovel- $\mathrm{S}_{(} \mathrm{SO}_{2}, \mathrm{SO}_{4^{2-}}$) og nitrogen- $\mathrm{N}\left(\mathrm{NO}_{2}, \mathrm{NH}_{4}^{+}, \mathrm{NH}_{3}, \mathrm{NO}_{3}{ }^{-}, \mathrm{HNO}_{3}\right)$ på norske bakgrunnsstasjoner, 1995.

3.2. Tidsutvikling

Vedlegg A.3.11 og figurene 3.3 og 3.4 viser variasjonene av årsmiddelkonsentrasjonene av partikulært sulfat og svoveldioksid siden henholdsvis 1973 og 1978.

Årsmiddelkonsentrasjonene av svoveldioksid har variert sterkt i hele landet siden slutten av 1970-årene, og er i stor grad påvirket av variasjoner i vær og klima. Stort sett avtok konsentrasjonene sterkt tidlig på 1980-tallet, men økte frem til 1987 og har siden avtatt. Årsverdiene for partikulært sulfat har hatt et lignende forløp, men med et maksimum i 1984 og ellers mindre variasjoner fra år til år.

Det er som for nedbør, utført en trendanalyse av årsmiddelkonsentrasjonene av svovelkomponenter i luft på seks stasjoner med lange måleserier ved hjelp av Mann-Kendalls test og Sen's estimater for helning (Gilbert, 1987). Tabell 3.7 viser at årsmiddelkonsentrasjonene på fastlandsstasjonene siden 1980 har hatt en signifikant midlere reduksjon mellom 0,025 og $0,060 \mu \mathrm{~g} \mathrm{~S} \mathrm{~m}{ }^{-3} \cdot{ }^{\circ} \mathrm{r}^{-1}$ for svoveldioksid og mellom 0,017 og $0,034 \mu \mathrm{~g} \mathrm{~S} \mathrm{~m}{ }^{-3 \cdot \mathrm{ar}^{-1}}$ for sulfat. Reduksjonene er for svoveldioksid med 1980 som referanseår, beregnet til å være mellom 58% og 84%, og for sulfat mellom 43% og 59%. Endringen i svoveldioksid- og sulfatkonsentrasjonene ved Ny -Ålesund har vært på hhv. 0,013 og $0,014 \mu \mathrm{~g} \mathrm{~S} \mathrm{~m}-3 \cdot{ }^{-1} \mathrm{r}^{-1}$ (hhv. 50 og 58% midlere reduksjon siden 1980).

Årsmiddelkonsentrasjonene av nitrogendioksid, summen av nitrat+salpetersyre samt summen av ammonium+ammoniakk i luft viser ingen markerte tendenser siden målingene startet i 1984.

Av figur 3.5 framgår det at vinterverdiene av svoveldioksid er utslagsgivende for variasjonen av årsmiddelkonsentrasjonene. Dette skyldes at det om vinteren kan være perioder med høye konsentrasjoner på grunn av kulde med lav blandingshøyde under transporten fra Europa, samtidig som transformasjonshastigheten av SO_{2} til SO_{4} er liten. Årsmiddelkonsentrasjoner av svoveldioksid og sulfat i Sør-Norge påvirkes i stor grad av antall stagnasjonsperioder om vinteren i Europas innland med påfølgende lufttransport fra sør og sørøst til Norge (SFT, 1986a). Årsmiddelkonsentrasjonene av svoveldioksid og partikulært sulfat har de senere år gjennomgående vært lave delvis på grunn av mildt og ustabilt vinterklima. De siste vintrene har i Sør-Norge imidlertid ikke vært mildere enn normalt, mens konsentrasjonsnivåene gjennomgående var blant de lavest målte ved de fleste stasjoner. Dette indikerer at reduserte utslipp er den viktigste årsaken til den observerte reduksjonen de siste årene.

Tabell 3.7: \quad Midlere endringer av de årlige middelkonsentrasjoner av svoveldioksid og partikulart sulfat i luft på norske bakgrunnsstasjoner i perioden 1980-95.

		Svoveldioksid, endringer				Sulfat, endringer			
		$\mu \mathrm{g} \mathrm{SO} 2-\mathrm{S} / \mathrm{m}^{3} \cdot \mathrm{ar}$			Midlere endring i perioden (\%)	$\mu \mathrm{g} \mathrm{SO} 4-\mathrm{S} / \mathrm{m}^{3} \cdot \mathrm{ar}$			Midere endring i perioden (\%)
Málested	Periode	Helning median	Nedre grense	Øvre grense		Helning median	Nedre grense	Øvre grens	
Birkenes	1980-95	-0.038	-0.050	-0.033	-58	-0.034	-0.050	-0.027	-43
Skreâdalen	1980-95	-0.045	-0.060	-0.027	- 72	-0.034	-0.043	-0.027	-50
Karvatn	1980-95	-0.025	-0.033	-0.015	- 84	-0.017	-0.020	-0.012	- 51
Tustervatn	1980-95	-0.034	-0.049	0.010	- 73	-0.025	-0.035	-0.014	-59
Jergul	1980-95	-0.060	-0.084	-0.030	-65	-0.026	-0.045	-0.011	-51
Ny -Ȧlesund	1980-95	-0.013	-0.020	-0.010	- 50	-0.014	-0.021	-0.007	- 58

Det er anvendt Mann-Kendalls test ved 95\% konfidensnivá og Sen's estimater av trender ved 90\% konfidensnivá (Gilbert, 1987). Beregning av midlere endring for perioden er basert pá lineær regresjon hvor helningskoeffisienten ligger innen Sen's trend estimator. + = $\boldsymbol{\sigma}$ ning, $==$ reduksjon

Figur 3.3: Årsmiddelkonsentrasjoner av partikulart sulfat i luft på norske bakgrunnsstasjoner i 1995.

Figur 3.4: Årsmiddelkonsentrasjoner av svoveldioksid i luft på norske bakgrunnsstasjoner i 1995.

Figur 3.5: Middelkonsentrasjoner av partikulcrt sulfat og svoveldioksid i luft for vinterhalvårene 1978/1979-1994/1995 (oktober-mars) og sommerhalvårene 1978-1995 på Birkenes og Jergul.

4. Målinger av bakkenært ozon

Månedsmiddelverdiene av ozon varierer betydelig over året og viser oftest et maksimum i april eller mai. Konsentrasjonene overskrider ofte "kritiske belastningsgrenser" eller tålegrenser, som er utarbeidet av FNs økonomiske kommisjon for Europa (ECE). Tålegrensen på $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ som middelverdi over 7 timer kl. 09-16 i vekstsesongen (april-september) ble overskredet på alle $\dot{m a ̊ l e s t e d e n e ~ u n t a t t ~ S v a n v i k, ~ m e d ~ d e ~ s t \phi r s t e ~ o v e r s k r i d e l s e n e ~ i ~ d e ~ s ø r l i g e ~ d e l e n e ~ a v ~}$ landet. Det var i 1995 farre "episodedøgn" (15 døgn) enn gjennomsnittlig de siste 10 åra (18,9 døgn). Med episodedøgn menes døgn med maksimal timemiddelverdi på minst $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ på ett sted eller minst $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ på flere steder. Høyeste timemiddelverdi var $160 \mu g / \mathrm{m}^{3}$ (Birkenes, 5. mai 1995 kl .10). Det ble målt timemiddelverdier over $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ på to steder (Haukenes og Birkenes). Ingen målesteder hadde timemiddelverdier over $180 \mu \mathrm{~g} / \mathrm{m3}$, som er EUs grenseverdi for melding til befolkningen.

4.1. Innledning

Ozon og andre fotokjemiske oksidanter dannes ved kjemiske reaksjoner mellom flyktige organiske forbindelser og nitrogenoksider under påvirkning av solstråling. Ozon er den viktigste av oksidantene og forekommer i størst mengde.

Ozon i troposfæren har et varierende "bakgrunnsnivă" og forekommer dessuten "episodisk" i høye konsentrasjoner. Bakgrunnsnivået er som oftest lavere enn grenseverdiene for luftkvalitet, men likevel nærmere grenseverdiene enn for de fleste andre luftforurensninger.

Ozon har negative virkninger på helse, vegetasjon og materialer. Helsevirkningene gjelder særlig for astmatikere og andre med kroniske luftveislidelser. Virkninger på vegetasjon gjelder særlig for nyttevekster som grønnsaker og korn. Ved langvarig eksponering er det påvist negative virkninger på skog (Küppers et al., 1994). Materialer som gummi og andre polymerforbindelser kan også skades ved påvirkning av ozon.

Målinger av ozon i Norge har foregått siden 1975, først i nedre Telemark, og fra 1977 også i Oslofjord-området. Siden midten av 1980-tallet har antall målesteder økt, særlig på grunn av skogskadene i Mellom-Europa og bekymringen for at ozon kan føre til skogskader også i Norge. Ozon ble målt på 14 steder i Norge i 1995 (se figur 1). Målestedene skal særlig vise regional ozonforekomst, men de ulike målestedene er i varierende grad lokalt påvirket av kjemisk nedbrytning av ozon eller avsetning til bakken. I slike tilfeller kan målingene underestimere den regionale ozoneksponeringen (se f.eks. Tørseth et al., 1996).

Stasjonene i nedre Telemark (Langesund, Klyve og Haukenes), drives av Statens forurensningstilsyn. Hovedhensikten er å overvåke luftforurensningene i nedre Telemark. Måleresultater er tatt med i denne rapporten.

Analysemetoder er omtalt i vedlegg C.

4.2. Grenseverdier

Ved bakken bør konsentrasjonen av ozon ikke overskride grenseverdier, som også kalles tålegrenser eller anbefalte luftkvalitetskriterier. Ifølge norske anbefalte kriterier for beskyttelse av helse bør ozonkonsentrasjonen på timebasis ikke overskride $100 \mu \mathrm{~g} / \mathrm{m}^{3}$ (SFT, 1992). Dette er et nivå hvor man regner med svært liten sannsynlighet for at noen påvirkes negativt og er bare litt høyere enn det generelle bakgrunnsnivået, som vanligvis er $20-80 \mu \mathrm{~g} / \mathrm{m}^{3}$. Den yrkeshygieniske grenseverdien for ozon er relativt lav, $200 \mu \mathrm{~g} / \mathrm{m}^{3}$. Avstanden fra det generelle bakgrunnsnivået til konsentrasjoner som også er uønsket i arbeidsmiljøet, er langt mindre for ozon enn for andre forurensningsgasser.

Norske anbefalte luftkvalitetskriterier for beskyttelse av plantevekst er de samme som tålegrensene fastsatt av ECE (1990). Disse er vist i tabell 4.1.

Tålegrensene har størst betydning i sommerhalvåret når planteveksten foregår. Vekstsesongens lengde varierer med planteslag og breddegrad, og vi valgte å bruke 6-månedersperioden april-september.

Tabell 4.1: Norske anbefalte luftkvalitetskriterier for beskyttelse av plantevekst (SFT, 1992b), sammenfallende med tålegrenser for ozon (ECE, 1990). Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Midlingstid	Beskyttelse av plantevekst
1 h	150
8 h	601 l
7 h	502 l

1) Gjennomsnitt for kl 00-08, 08-16 eller 16-24
2) Gjennomsnitt for kl 09-16 i vekstsesongen (april-september)

EUs ozondirektiv ble vedtatt i 1992 (EU, 1994). Direktivet fastsetter grenseverdier for beskyttelse av helse og plantevekst, som vist i tabell 4.2.

Tabell 4.2: Grenseverdier i EUs ozondirektiv (EU, 1994). Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Midlingstid	Beskyttelse av	
	Helse	Plantevekst
1 h		200
$8 \mathrm{~h} 1)$	110	
24 h		65
Melding: 1 h	180	
Advarsel: 1 h	360	

1) Mellom kl 00 og 09, 08 og 17, 16 og 01, 12 og 21.

Som følge av Norges EØS-medlemskap er EUs ozondirektiv iverksatt for norske ozonmålinger fra og med 1995, og data rapportert i henhold til direktivet.

I en rapport fra en ECE-workshop i Sveits i 1993 (ECE, 1993) er det foreslått nye tålegrenser for å beskytte plantevekst, basert på antall timer over en grense på $40 \mathrm{ppb}\left(80 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$. Tålegrensen kalles AOT40 (Accumulated exposure over a threshold of 40 ppb), og har benevning ppb h eller ppm h . AOT40 beregnes som summen av differansen mellom timemiddelkonsentrasjonen og 40 ppb for hver time der ozonkonsentrasjonen overskrider 40 ppb . Beregningsmåten viser gode statistiske sammenhenger for en rekke dose-respons-fors $\varnothing \mathrm{k}$. Ved en workshop i Kuopio, Finland, i 1996 ble det bestemt à videreføre AOT40-konseptet med mindre endringer. Tre tålegrenser er foreslått:

a) Middelverdi for 3 mnd (mai-juli)

Beregningsgrunnlag: 5\% avlingsreduksjon for hvete:
AOT40 $=3000 \mathrm{ppb}$ h beregnet for dagslystimer (definert som stråling på minst $50 \mathrm{~W} / \mathrm{m}^{2}$.

b) Korttidsverdi for synlige skader på jordbruksvekster

AOT40 $=700 \mathrm{ppb}$ h for tre påfølgende dager, beregnet for dagslystimer.
Denne tålegrensen er under endring til hhv. 500 og 200 ppb h over fem påfølgende dager når atmosfærens vanndamptrykk er begrensende for ozonopptak eller ikke.

c) 6-månedersverdi for skog

AOT40 $=10 \mathrm{ppm} \mathrm{h}$, beregnet for dagslystimer, 1. april - 1.oktober.
Ozondata fra norske målesteder for perioden 1989-1993 er bearbeidet og rapportert i samsvar med forslagene til AOT40-verdier (Tørseth et al., 1996). Det er også vurdert hvordan tålegrensekonseptet kan tilpasses nordiske forhold.

4.3. Resultater

4.3.1 Overskridelser av anbefalte luftkvalitetskriterier og tålegrenser for ozon

Tabell 4.3 viser antall timer og døgn med timemiddelverdier av ozon større enn $100,150 \mathrm{og} 180 \mu \mathrm{~g} / \mathrm{m}^{3}$ på de ulike målestedene og høyeste timemiddelverdier i 1995. Høyeste timemiddelverdi i 1995 var $160 \mu \mathrm{~g} / \mathrm{m}^{3}$, målt på Birkenes 5.5.95 kl . 10. Timemiddelverdier over $100 \mu \mathrm{~g} / \mathrm{m}^{3}$ ble målt på alle målestedene unntatt Jergul, Svanvik og Zeppelinfjellet. Timemiddelverdier over $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ ble målt på Haukenes og Birkenes. Ingen målesteder hadde timemiddelverdier over $180 \mu \mathrm{~g} / \mathrm{m}^{3}$, som er EUs grenseverdi for melding til befolkningen, se pkt. 4.3.2.

Middelverdien for 8 timer (8 h -middelverdien) på $60 \mu \mathrm{~g} / \mathrm{m}^{3}$ ble overskredet i 182 døgn av 183 døgn i 6-månedersperioden april-september, og i 166 døgn (91%) på Jeløya, se tabell 4.4. Svanvik hadde færrest antall døgn, 45 døgn (25%), med 8 hmiddelverdier over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$. Det var gjennomgående flest overskridelser i de sørlige delene av landet.

Tabell 4.3: Antall timer (h) og døgn (d) med timemiddelverdier av ozon større enn 100,150 og $180 \mu \mathrm{~g} / \mathrm{m}^{3}, 1995$.

| Málested | Totalt antall | | $100 \mu \mathrm{~g} / \mathrm{m}^{3}$ | | $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ | | $180 \mu \mathrm{~g} / \mathrm{m}^{3}$ | | Høyeste timemiddelverdi | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| | Timer | Døgn | h | d | h | d | h | d | $\mu \mathrm{g} / \mathrm{m}^{3}$ | Dato |
| | 8655 | 365 | 167 | 25 | | | | | 134 | $95-05-05$ |
| Jeløya | 8729 | 365 | 278 | 46 | | | | | 148 | $95-07-31$ |
| Nordmoen | 8608 | 360 | 37 | 10 | | | | | 122 | $95-07-14$ |
| Osen | 8757 | 365 | 177 | 34 | | | | | 144 | $95-08-13$ |
| Langesund | 8359 | 357 | 113 | 22 | | | | | 138 | $95-05-05$ |
| Klyve | 8387 | 354 | 127 | 21 | | | | | 141 | $95-07-31$ |
| Haukenes | 4466 | 191 | 147 | 25 | 3 | 1 | | | 155 | $95-08-22$ |
| Birkenes | 7952 | 340 | 199 | 27 | 2 | 1 | | | 160 | $95-05-05$ |
| Voss | 8673 | 363 | 206 | 22 | | | | | 142 | $95-08-22$ |
| Kärvatn | 8469 | 361 | 123 | 22 | | | | | 136 | $95-05-25$ |
| Tustervatn | 8131 | 345 | 37 | 8 | | | | | 120 | $95-05-03$ |
| Jergul | 8739 | 365 | | | | | | | 98 | $95-04-18$ |
| Svanvik | 8702 | 365 | | | | | | | 90 | $95-04-17,95-05-20$ |
| Zeppelinfjellet | 8722 | 365 | | | | | | | 94 | $95-06-01$ |
| Sum datoer | | 365 | | 71 | | 2 | | | | |

Tabell 4.4: Antall døgn pr. måned med én eller flere 8 h-middelverdier av ozon over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, april-september 1995.

Målested	April	Mai	Juni	Juli	Aug.	Sept.	Sum
Prestebakke	30	28	25	21	21	2	127
Jeløya	30	30	29	29	30	18	166
Nordmoen	29	27	18	16	9	0	99
Osen	30	31	28	29	22	16	156
Langesund	27	30	26	20	21	9	133
Klyve	30	29	23	26	12	10	130
Haukenes	30	31	25	22	20	8	136
Birkenes	30	31	26	19	27	14	147
Voss	30	31	26	15	15	13	130
Kåvatn	30	28	21	18	9	16	122
Tustervatn	22	31	18	13	8	7	99
Jergul	26	29	9	7	1	2	74
Svanvik	24	18	3	0	0	0	45
Zeppelinfjellet	24	25	8	4	10	22	93
Antall datoer	30	31	30	31	31	29	182

Tålegrensen på $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ som middelverdi for 7 timer (7 h -middelverdi) kl . 09-16 i vekstsesongen (april-september) ble overskredet i hele landet, bortsett fra Svanvik. Middelverdien var størst på Jeløya og Osen ($78 \mu \mathrm{~g} / \mathrm{m}^{3}$) og avtok nordover til Svanvik ($47 \mu \mathrm{~g} / \mathrm{m}^{3}$), se tabell 4.5.

Tabell 4.5: \quad Middelkonsentrasjoner av ozon for 7 timer (kl.09-16) i vekstsesongen (april-september) 1995.

Målested	Kons. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
Prestebakke	69
Jeløya	78
Nordmoen	62
Osen	78
Langesund	67
Klyve	69
Haukenes	70
Birkenes	77
Voss	71
Kårvatn	69
Tustervatn	65
Jergul	56
Svanvik	47
Zeppelinfjellet	60

Figur 4.1 viser 7 h-middelverdien for målestedene Jeløya og Birkenes i perioden 1981-1995. Figur 4.2 viser kartframstilling av antall døgn med 8 h -middelverdier over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$. Figuren viser gjennomgående $\varnothing \mathrm{kende}$ tendens fra nord mot sør. Regional fordeling av 7 h-middelverdiene i 1995 er vist på figur 4.3.

Figur 4.1. Middelkonsentrasjoner av ozon for 7 timer (kl. 09-16) i vekstsesongen (april-september) ved stasjonene Jeløya og Birkenes i perioden 19811995.

Figur 4.2: Antall døgn med 8 hmiddelverdier av ozon over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, aprilseptember 1995.

Figur 4.3: Midlere 7 h-konsentrasjon av ozon ($\mu \mathrm{g} / \mathrm{m}^{3}$) kl.09-16, aprilseptember 1995.

Som vist i tabell 4.6 var det i 1995 overskridelse av tålegrensen for landbruksvekster (3000 ppb h) ved tre målesteder (Jeløya, Osen og Birkenes). Det var ingen overskridelser av korttidsverdien for synlig skade. Det var heller ingen overskridelser av tålegrensen for skog i 1995 (tabell 4.7).

Tabell 4.6: Datadekning og beregnede eksponeringsdoser for landbruksvekster for perioden 1. mai-1. august 1995 (enhet ppb h).

Málested	Datadekning $(\%)$	AOT40 (korrigert for datadekning)
Prestebakke	98	2242
Jeløya	99	3877
Nordmoen	99	970
Osen	99	3712
Langesund	99	1765
Klyve	94	2552
Haukenes	93	2581
Birkenes	90	3473
Voss	100	2280
Kảrvatn	95	2294
Tustervatn	100	1296
Jergul	99	111
Svanvik	99	20
Zeppelinfjellet	100	217

Tabell 4.7: Datadekning og beregnede eksponeringsdoser for skog for perioden 1. april - 1. oktober 1995 (enhet ppb h).

Stasjon	Datadekning $(\%)$	AOT40 (korrigert for datadekning)
Prestebakke	97	4523
Jeløya	99	9492
Nordmoen	96	1784
Osen	100	7580
Langesund	99	3453
Klyve	96	4522
Haukenes	96	5131
Birkenes	93	7600
Voss	98	5843
Kárvatn	95	4666
Tustervatn	95	3242
Jergul	99	450
Svanvik	99	65
Zeppelinfjellet	99	1139

4.3.2 Overskridelser av grenseverdiene \boldsymbol{i} EUs ozondirektiv

Tabell 4.8 viser antall døgn med overskridelser av 8 h -middelverdien på $110 \mu \mathrm{~g} / \mathrm{m}^{3}$ for beskyttelse av helse. Det var i alt 28 datoer med overskridelser. Flest overskridelser forekom på Birkenes og Jeløya med henholdsvis 14 døgn og 13 døgn, mens det var ingen overskridelser på Jergul, Svanvik og Zeppelinfjellet. Høyeste 8 h-middelverdi var $146 \mu \mathrm{~g} / \mathrm{m}^{3}$ (Birkenes, 5.5.95).

Tabell 4.8: Antall døgn pr. måned med en eller flere 8 h-middelverdier av ozon større enn $110 \mu \mathrm{~g} / \mathrm{m}^{3}, 1995$.

Málested	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Des	Sum
Prestebakke	0	0	0	1	3	1	4	1	0	0	0	0	10
Jeløya	0	0	0	1	3	2	3	4	0	0	0	0	13
Nordmoen	0	0	0	0	0	0	1	0	0	0	0	0	1
Osen	0	0	0	1	4	0	1	2	0	0	0	0	8
Langesund	0	0	0	1	1	1	1	0	0	0	0	0	4
Klyve	0	0	0	1	2	0	2	1	0	0	0	0	6
Haukenes				1	3	1	2	3	0				
Birkenes	0	0	0	2	5	2	2	3	0	0	0	0	14
Voss	0	0	1	4	3	1	0	1	0	0	0	0	10
Kárvatn	0	0	0	0	2	0	0	0	0	0	0	0	2
Tustervatn	0	0	0	0	1	0	0	0	0	0	0	0	1
Jergul	0	0	0	0	0	0	0	0	0	0	0	0	0
Svanvik	0	0	0	0	0	0	0	0	0	0	0	0	0
Zeppelinfjellet	0	0	0	0	0	0	0	0	0	0	0	0	0
Antall datoer	0	0	1	4	8	3	5	7	0	0	0	0	28

Det var ingen timemiddelverdier av ozon høyere enn grenseverdien på $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ for beskyttelse av plantevekst.

Tabell 4.9 viser antall døgnmiddelvedier større enn grenseverdien på $65 \mu \mathrm{~g} / \mathrm{m}^{3}$ for beskyttelse av plantevekst. Det var mange døgn med overskridelser i 1995, i alt 291 datoer (80%). Flest overskridelser forekom på Tustervatn og Kårvatn, med henholdsvis 162 døgn (44\%) og 161 døgn (44\%). Samtlige datoer i februar, mars, april og mai hadde overskridelser på en eller flere stasjoner.

Høyeste døgnmiddelverdi var $121 \mu \mathrm{~g} / \mathrm{m}^{3}$ (Birkenes, 5.5.95).

Tabell 4.9: Antall døgn pr. måned med en eller flere døgnmiddelverdier av ozon større enn $65 \mu \mathrm{~g} / \mathrm{m}^{3}, 1995$.

Målested	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Des	Sum
Prestebakke	0	4	7	14	23	7	6	7	0	1	0	0	69
Jeløya	6	13	21	27	28	20	15	14	2	6	4	2	158
Nordmoen	0	0	6	9	4	0	1	1	0	0	0	0	21
Osen	3	13	30	30	28	17	7	2	2	1	2	0	135
Langesund	6	4	4	12	18	5	5	5	0	0	2	1	62
Klyve	1	7	10	19	22	13	12	2	0	0	0	0	86
Haukenes				20	20	5	4	4	0				
Birkenes	4	7	20	24	23	12	5	8	2	2	3	2	112
Voss	5	19	25	29	27	11	3	3	3	4	1	7	137
Karvatn	13	25	31	30	23	3	2	0	5	2	5	22	161
Tustervatn	15	25	30	20	29	4	2	2	0	3	9	23	162
Jergul	3	3	18	20	17	0	0	0	0	0	2	5	68
Svanvik	0	0	9	13	5	0	0	0	0	0	0	0	27
Zeppelinfjellet	21	8	20	18	17	6	1	0	9	13	17	17	147
Antall datoer	26	28	31	30	31	26	22	15	13	17	22	30	291

Grenseverdien for advarsel til befolkningen ($360 \mu \mathrm{~g} / \mathrm{m}^{3}$, timemiddelverdi) ble ikke overskredet i 1995. Grenseverdien for melding til befolkningen ($180 \mu \mathrm{~g} / \mathrm{m}^{3}$, timemiddelverdi) ble heller ikke overskredet i 1995.

4.3.3 Månedsmiddelverdier for ozon

Månedsmiddelverdiene for ozon er vist i tabell 4.10 og figur 4.4-4.7. Osen hadde høyeste månedsmiddelverdi i april ($84 \mu \mathrm{~g} / \mathrm{m}^{3}$). De høyeste månedsmiddelverdiene forekom i april eller mai på de fleste målestedene, og på ett sted i mars (Kårvatn).

Tabell 4.10: Månedsmiddelverdier ($\mu \mathrm{g} / \mathrm{m}^{3}$) for ozon, 1995.

Målested	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Des	Års- middel
Prestebakke	43	55	59	67	72	59	55	55	42	41	35	36	52
Jeløya	46	65	69	80	81	71	68	69	53	50	37	35	60
Nordmoen	27	36	51	59	53	46	42	35	22	17	15	11	35
Osen	53	65	75	84	77	67	59	47	47	48	42	43	59
Langesund	46	54	56	62	66	55	51	53	45	38	35	32	49
Klyve	36	54	58	69	73	64	62	48	45	33	26	25	49
Haukenes				69	70	56	52	50	40				
Birkenes	50	66	69	77	74	61	57	59	50	43	40	45	58
Voss	56	68	76	82	75	63	52	47	51	52	45	56	60
Kårvatn	64	76	80	79	78	54	47	37	45	47	53	69	61
Tustervatn	66	73	78	80	81	56	52	49	51	57	63	68	65
Jergul	57	60	67	69	67	49	44	36	41	43	57	56	54
Svanvik	46	52	62	61	54	42	32	27	28	32	39	40	43
Zeppelinfjellet	66	63	65	66	65	57	50	54	63	62	65	66	62

4.3.4 Midlere døgnvariasjoner

Ozonkonsentrasjonen varierer systematisk over døgnet. Konsentrasjonen er oftest lav om natta, den stiger utover formiddagen, og er gjerne høyest om ettermiddagen. Dette er illustrert i figur 4.8-4.11, som viser midlere variasjon over døgnet for månedene april-september.

Den midlere døgnlige maksimumskonsentrasjonen var høyest på Jeløya, Birkenes og Osen med ca. $80 \mu \mathrm{~g} / \mathrm{m}^{3}$, og lavest på Svanvik med ca. $50 \mu \mathrm{~g} / \mathrm{m}^{3}$. Midlere døgnvariasjon var oftest tydligere for målestedene sør i landet enn for målestedene langt nord. Konsentrasjonen varierte svært lite over døgnet på Zeppelinfjellet.

Figur 4.4: Månedmiddelverdier av ozon 1995 ($\mu \mathrm{g} / \mathrm{m}^{3}$) for Prestebakke, Jeløya, Nordmoen og Osen.

Figur 4.5: Månedsmiddelverdier av ozon 1995 ($\mu \mathrm{g} / \mathrm{m}^{3}$) for Langesund, Klyve og Haukenes.

Figur 4.6: Månedsmiddelverdier av ozon $1995\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ for Birkenes, Voss og Kårvatn.

Figur 4.7: Månedsmiddelverdier av ozon $1995\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ for Tustervatn, Jergul, Svanvik og Zeppelinfjellet.

Figur 4.8: Midlere døgnvariasjon av ozon $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ for Prestebakke, Jeløya, Nordmoen og Osen, april-september 1995.

Figur 4.9: Midlere døgnvariasjon av ozon $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ for Langesund, Klyve og Haukenes, april-september 1995.

Figur 4.10: Midlere døgnvariasjon av ozon $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ for Birkenes, Voss og Kårvatn, april-september 1995.

Figur 4.11: Midlere døgnvariasjon av ozon ($\mu \mathrm{g} / \mathrm{m}^{3}$) Tustervatn, Jergul, Svanvik og Zeppelinfjellet, april-september 1995.

4.3.5 Ozonepisoder

Episoder med høye ozonkonsentrasjoner forekommer vanligvis i sommerhalvåret, dvs. i månedene april-september. Slike episoder vil oftest vare fra et døgn til en uke. Episodene har sammenheng med høytrykkenes posisjon og vandring over Nord-Europa. Fordi sommerværet i Nord-Europa er svært variabelt, vil antall ozonepisoder variere atskillig fra år til år. Dette er illustrert i tabell 4.11, der antall episoded $\varnothing \mathrm{gn}$ og maksimal timemiddelverdi er gitt for 1995 og de foregående 10 åra. Et episodedøgn er definert som et døgn med maksimal timemiddelverdi på minst $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ på ett målested eller minst $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ på flere målesteder. Det var flest episodedøgn i 1988 og 1994, færre i 1995 (15 episodedøgn) enn gjennomsnitt for 10-årsperioden 1985-1994 (18.9 episodedøgn).

Tabell 4.11: Antall episodedøgn og høyeste døgnmiddelverdier 1984-1995.

År	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Antall episodedøgn	13	12	11	32	9	23	18	25	12	34	15
Høyeste timemiddel- verdi $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \mu \mathrm{g} / \mathrm{m}^{3}$	266	268	204	209	172	202	160	204	164	188	160

5. Overvåking av sporelementer og organiske forbindelser ved Lista (CAMP) og Ny-Ålesund (AMAP)

Dette kapittelet inneholder en kortfattet beskrivelse av resultatene fra målekampanjene AMAP og CAMP. Måleresultatene fra målinger utført i luft ved Ny -Ålesund under AMAP og organiske forbindelser målt på Lista under CAMP foreligger som vedlegg til rapporten (vedlegg A. 5.)

5.1. CAMP (Lista)

Comprehensive Atmospheric Monitoring Programme (CAMP) er en av aktivitetene innen Oslo og Paris Kommisjonens (OSPAR) studier av transport av landbasert forurensning til Nordsjøen. Det tas for seg 17 forurensningsfaktorer i måleprogrammet under CAMP, som utføres ved 28 stasjoner i 10 OSPAR land. OSPARs overordnede mål er å redusere utslipp av de studerte forurensningsfaktorene med 50%. CAMP-målingene er utført for å observere endring i tilførsler i samsvar med OSPAR-kommisjonens avtaler.

NILU utfører etter oppdrag fra SFT målinger av tungmetaller, heksaklorosykloheksaner (HCH) og heksaklorobenzen (HCB) i prøver fra luft og nedbør, innsamlet ukentlig ved Lista. Følgende tungmetaller er målt: arsen (As), krom (Cr), kobber (Cu), nikkel (Ni), bly (Pb), sink (Zn), kadmium (Cd) og kvikksølv (Hg). I tillegg rapporterer NILU konsentrasjoner av forskjellige nitrogenforbindelser i luft og nedbør ved Birkenes (for Lista), Kårvatn, og Ny-Ålesund til CAMP. I tillegg rapporteres også konsentrasjoner av Cd, Pb og Zn i nedbør ved Kårvatn. Disse tilleggsdata er presentert i de foregående kapitler. Informasjon om konsentrasjoner av PCBer og klordaner målt ved Lista har også vært rapportert til SFT.

5.2. AMAP (Ny-Ålesund)

AMAP, Arctic Monitoring and Assessment Programme, startet i 1994. I AMAP deltar: Norge, Sverige, Danmark, Island, Finland, Canada, USA og Russland. Programmet omfatter både kartlegging, overvåking og utredning av miljøgiftbelastningen i nordområdet. Et viktig mål er å overvåke nivåene og trender i utviklingen av antropogene forurensninger i alle deler av det arktiske miljøet (luft, vann og terrestriske forhold) samt vurdering av virkningene av forurensningene. Overvåking av organiske miljøgifter, tungmetaller og radioaktivitet er et prioritert område. NILU har målt organiske miljøgifter på ukesbasis fra og med april 1993.

Målet er å kartlegge nivåene og utviklingen over tid av organiske miljøgifter og tungmetaller i luft på den eksisterende luftmålestasjonen på Zeppelinfjellet ved Ny-Ålesund på Svalbard.

Følgende organiske miljøgifter inngår i måleprogrammet: Heksaklorsykloheksan (to isomerer), klordaner (4 isomerer), heksaklorbenzen, DDT (6 isomerer), PCB (10 kongenerer) og polysykliske aromatiske hydrokarboner (33 komponenter). Det inngår ialt 10 tungmetaller ($\mathrm{Pb}, \mathrm{Cd}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Cr}, \mathrm{Co}, \mathrm{As}, \mathrm{Mn}$ og V). I tillegg måles også kvikksølv.

Det rapporteres resultater på ukesbasis. Prøvetaking finner sted ukentlig over to døgn. Det tas separate parallelle filterprøver for hver av komponentgruppene.

Prøvetaking og analysemetodikk er beskrevet i vedlegg C .

5.3. Resultater fra Lista (CAMP)

5.3.1. Sporelementer i luft

Konsentrasjonene av $\mathrm{As}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Cd}$ i finfraksjon og i summen av finog grovfraksjon er presentert i tabellene 5.1-5.2. Konsentrasjon av Hg er presentert i tabell 5.3.

Konsentrasjoner av tungmetaller er målt på Lista siden 1991. Tabell 5.4 viser årsmiddelverdier av $\mathrm{Cd}, \mathrm{Hg}, \mathrm{As}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}$ og Zn i luft. Kvikksølv viser tydelig nedgang i konsentrasjonen fra 1991 til 1995.

Konsentrasjoner i luft av bly og kadmium viser en overraskende utvikling. De viser en økning over de siste fire åra, noe som var uventet fordi utslipp av disse grunnstoffene har avtatt i Europa. Også her har antakelig meteorologiske forhold vært bestemmende for konsentrasjoner i luft på Lista.

Tabell 5.1: Månedlige og årlig middelkonsentrasjon av $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$, V og As i luft på Lista, 1995, målt i finfraksjonen.
Enhet: $n g / m^{3}$.

	Middelkonsentrasjon							
Måned	Pb	Cd	Cu	Zn	Cr	Ni	V	As
Januar	3,19	0,087	0,7	5,3	0,2	0,6	0,7	0,33
Februar	1,24	0,025	0,2	0,9	0,3	0,6	0,6	0,13
Mars	2,90	0,059	0,4	4,2	0,2	0,6	0,7	0,58
April	1,69	0,042	0,3	4,0	0,2	0,5	0,7	0,20
Mai	3,94	0,072	0,5	6,5	0,5	0,8	2,2	0,39
Juni	3,23	0,057	0,3	6,0	0,2	0,5	1,6	0,42
Juli	2,08	0,045	0,5	3,2	0,2	0,7	1,8	0,21
August	2,14	0,047	0,3	3,7	0,2	0,5	1,2	0,24
September	2,01	0,055	0,4	3,1	1,2	0,5	0,9	0,25
Oktober	4,97	0,102	0,6	4,7	0,2	0,6	1,7	0,29
November	3,59	0,070	0,5	5,2	0,2	0,5	0,8	0,53
Desember	1,69	0,062	0,3	3,6	0,2	0,5	0,3	0,38
1995	2,74	0,060	0,4	4,2	0,3	0,6	1,1	0,34

Tabell 5.2: Månedlige og årlig middelkonsentrasjon av $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$, V og As i luft på Lista, 1995, målt i både grov- og finfraksjon. Enhet: $n g / m^{3}$.

	Middelkonsentrasjon							
Måned	Pb	Cd	Cu	Zn	Cr	Ni	V	As
Januar	4,6	0,118	1,3	7,8	1,8	0,8	1,1	0,6
Februar	1,9	0,036	0,8	2,3	2,0	0,8	0,9	0,3
Mars	3,9	0,080	1,0	6,6	1,8	0,9	1,1	0,8
April	2,3	0,053	1,9	6,5	1,7	0,8	1,1	0,3
Mai	4,9	0,087	1,1	8,6	2,1	1,1	2,7	0,5
Juni	3,9	0,066	0,9	7,2	1,6	0,7	1,9	0,5
Juli	2,8	0,052	1,1	4,4	1,6	1,0	2,3	0,3
August	2,8	0,059	0,8	4,8	1,7	0,7	1,5	0,3
September	2,4	0,066	1,0	3,9	2,7	0,7	1,2	0,3
Oktober	8,6	0,156	1,2	9,0	1,8	1,0	2,1	0,4
November	4,7	0,092	0,9	7,3	1,6	0,8	1,2	0,6
Desember	2,2	0,075	0,8	4,7	1,6	0,7	0,7	0,5
1995	3,8	0,078	1,0	6,1	1,8	0,8	1,5	0,5

Tabell 5.3: Månedlige middelkonsentrasjoner av Hg i luft på Lista, 1995. Enhet: $\mathrm{ng} / \mathrm{m}^{3}$.

Måned	Middelkonsentrasjon
Januar	2,27
Februar	1,60
Mars	1,66
April	1,41
Mai	1,25
Juni	1,85
Juli	1,09
August	2,01
September	1,53
Oktober	1,76
November	1,50
Desember	1,63

Tabell 5.4: Årsmiddelverdier av $\mathrm{Cd}, \mathrm{Hg}, \mathrm{As}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}$ og Zn på Lista fra 1991 til 1995.
Enhet: ng/m ${ }^{3}$.

Element	1991	1992	1993	1994	1995
Cd	0,06	0,05	0,07	0,07	0,08
Hg	-	2,06	1,84	1,84	1,63
As	0,77	0,19	0,41	0,36	0,50
Cr	1,86	1,79	3,70	2,80	1,80
Cu	0,80	0,47	0,85	0,90	1,0
Ni	0,59	1,33	0,81	0,88	0,80
Pb	2,70	2,35	3,67	3,68	3,8
Zn	4,4	3,93	6,98	4,53	6,1

5.3.2. Sporelementer i nedbør

Konsentrasjoner av andre tungmetaller enn Hg i nedbørprøver fra Lista er presentert tidligere i kapittel 2. Månedsmiddelkonsentrasjonene av Hg er vist i tabell 5.5. Nedgangen av Hg i luft sammenfaller som nevnt bra med nedgang i utslipp til luft i Europa, men tilsvarende nedgang i konsentrasjon i nedbør forekommer ikke; tvert imot var det en \varnothing kning i konsentrasjonen i nedbør fra 1994 til 1995. Forskjellige meteorologiske forhold kan antakelig forklare $\not \emptyset k n i n g e n ~ i ~ k v i k k s ø l v k o n s e n t r a s j o n ~ i ~ n e d b ø r ~ f r a ~ 1994 ~ t i l ~ 1995 . ~$.

Tabell 5.5: Månedlige middelkonsentrasjoner av Hg i nedbør på Lista, 1995. Enhet: ng/l.

Måned	Middelkonsentrasjon
Januar	13,7
Februar	10,9
Mars	10,1
April	21,5
Mai	14,5
Juni	9,2
Juli	19,3
August	30,4
September	8,8
Oktober	21,6
November	19,4
Desember	16,6

5.3.3. Organiske forbindelser i luft

Månedlige middelkonsentrasjoner av $\alpha-$ og $\gamma-\mathrm{HCH}$ og HCB i luft fra Lista er gjengitt i tabell 5.6. Den gjennomsnittlige luftkonsentrasjonen for heksaklorsykloheksan i 1995 (sum $\alpha-$ og $\gamma-\mathrm{HCH}$) er på $117 \mathrm{pg} / \mathrm{m}^{3}$. Til sammenligning var den for årene 1992, 1993, og 1994 henholdsvis $179,132 \mathrm{og} 188 \mathrm{pg} / \mathrm{m}^{3}$. Den laveste konsentrasjon ble målt til $34,5 \mathrm{pg} / \mathrm{m}^{3}$ (uke 6, figur 5.1) og de høyeste konsentrasjonenene ble målt til $639 \mathrm{pg} / \mathrm{m}^{3}$ (uke 43) og $425 \mathrm{pg} / \mathrm{m}^{3}$ (uke 18). Økningen tilskrives i hovedsak en $\varnothing \mathrm{kning} \mathrm{i}$ lindan ($\gamma-\mathrm{HCH}$) som er fortsatt i bruk i endel europeiske land, bl.a. Frankrike (Voldner and Li, 1995). Det forekommer ingen utpreget sesongvariasjon, men det kan se ut som det i sommerhalvåret kan vare noe høyere konsentrasjoner av HCH (figur 5.1). Høye konsentrasjoner i tilknytning til sprøyting av HCH på kontinentet registreres normalt ved $ø$ kede luft og nedbørkonsentrasjoner på Lista i perioden april til juni og faller sammen med sørlig vindretning (langtransportepisode). Dette ser ut til å ha vært tilfellet i mai der månedsmiddelkonsentrasjonen var på $140 \mathrm{pg} / \mathrm{m}^{3}$. Sprøyting om høsten kan også forekomme, noe som kan forklare den høye konsentrasjonen i uke 43. Denne måneden når $\gamma-\mathrm{HCH}$ et månedsmiddel på $235 \mathrm{pg} / \mathrm{m}^{3}$. Den tilsvarende sesongpregede fordeling av HCH i luft er også dokumentert fra Sverige (BrorströmLundén, 1995). Generelt er konsentrasjonen av HCH ca. 2 ganger høyere på Lista sammenlignet med Ny - \AA lesund.

Årsmiddelet for HCB er $95 \mathrm{pg} / \mathrm{m}^{3}$. Dette er omtrent det samme som i 1994, mens i 1992 og 1993 var HCB konsentrasjonen i luft på henholdsvis 121 og $161 \mathrm{pg} / \mathrm{m}^{3}$. De høyeste konsentrasjonene av HCB ble målt i ukene 36 ($137 \mathrm{pg} / \mathrm{m}^{3}$), 37 $\left(150 \mathrm{pg} / \mathrm{m}^{3}\right)$ og $43\left(136 \mathrm{pg} / \mathrm{m}^{3}\right)$. Den laveste konsentrasjonen ble målt i uke 6 ($53 \mathrm{pg} / \mathrm{m}^{3}$).

Tabell 5.6: Månedlige middelkonsentrasjoner av HCHs og HCB i luft på Lista, 1995.

Enhet: pg $/ \mathrm{m}^{3}$.

	Middelkonsentrasjon		
Måned	$\alpha-\mathrm{HCH}$	$\gamma-\mathrm{HCH}$	HCB
Januar	49,0	26,8	89,2
Februar	44,0	18,6	73,6
Mars	41,5	44,0	97,9
April	42,8	27,1	88,7
Mai	61,7	140,1	105,8
Juni	53,5	74,6	100,7
Juli	63,0	73,9	100,7
August	59,1	48,8	95,7
September	58,8	55,3	104,1
Oktober	48,3	235,8	117,9
November	46,9	33,0	86,7
Desember	53,7	18,7	80,9

Figur 5.1: Ukentlig luftkonsentrasjon av HCH (sum α - og γ-HCH) i 1995.

5.3.4. Organiske forbindelser i nedbør

Månedsmiddelkonsentrasjoner for HCH og HCB i nedbør er gjengitt i tabell 5.7, og ukeskonsentrasjoner for sum HCH er gjengitt i figur 5.2. Den gjennomsnittlige nedbørkonsentrasjonen for heksaklorsykloheksan i 1995 (sum $\alpha-\operatorname{og} \gamma$-HCH) var på $8,43 \mathrm{ng} / \mathrm{l}$. Til sammenligning var den for årene 1992, 1993, og 1994 henholdsvis $11,7,15,6$ og $12,7 \mathrm{ng} / \mathrm{l}$. Den laveste konsentrasjon ble målt til $3,04 \mathrm{ng} / \mathrm{l}$ (uke 20) og den høyeste konsentrasjonen ble målt til $62,4 \mathrm{ng} / 1$ (uke 22). Økningen tilskrives utelukkende en $ø$ kning i lindan ($\gamma-\mathrm{HCH}$). Det forekommer ingen utpreget sesongvariasjon (figur 5.2), men de høyeste konsentrasjonene av HCH forekommer perioden april til juni som sammenfaller med bruksperioden i Europa. Høye konsentrasjoner i tilknytning til sprøyting av HCH på kontinentet registreres normalt ved $ø$ kede luft og nedbørkonsentrasjoner på Lista i perioden mars til mai. I uke 18 måles det forhøyede HCH konsentrasjoner i både luft og nedbør. Det forhold at de høye konsentrasjonene i luft og nedbør ikke ser ut til å falle sammen kan skyldes at prøvene er tatt på ulikt tidspunkt innenfor den samme uken. Denne sesongpregede fordeling av HCH i nedbør er også dokumentert fra Sverige og Danmark (Brorström-Lundén, 1995; Cleeman et al., 1995).

Tabell 5.7: Månedlige middelkonsentrasjoner av HCH og HCB i nedbør på Lista, 1995.
Enhet: ng/l.

Måned	Middelkonsentrasjon γ-HCH		
Januar	2,3	2,83	0,65
Februar	2,03	2,23	1,28
Mars	2,03	2,67	0,85
April	1,95	3,62	0,96
Mai	2,19	11,17	1,04
Juni	1,82	19,93	0,79
Juli	1,33	5,01	0,96
August			
September	1,93	3,15	0,73
Oktober	1,94	10,76	0,42
November	1,63	2,89	0,15
Desember	2,70	4,02	0,34

Heksaklorbenzen i nedbør varierer mellom 0,14 til $2,35 \mathrm{ng} / 1$. Årsmiddelkonsentrasjonen er på $0,78 \mathrm{ng} / \mathrm{l}$. I forhold til tidligere år har HCB konsentrasjonen gradvis øket siden 1992 ($0,12 \mathrm{ng} / \mathrm{l}$).

Figur 5.2: Ukentlig nedbørkonsentrasjon av HCH (sum α - og γ-HCH) i 1995. Manglende data representerer uker uten tilstrekkelig nedbør.

5.4. Resultater fra $N y$-Ålesund (AMAP)

5.4.1. Sporelementer i luft

Konsentrasjonen av tungmetaller på Ny-Ålesund, Svalbard, var lavere i 1995 enn det som ble målt av NILU på samme sted i begynnelsen av 1980-åra.

Konsentrasjonen av bly viste særlig tydelig nedgang, og dette må henge sammen med at blyinnholdet i bensin er redusert betydelig i ulike områder på den nordlige halvkule.

Konsentrasjonene av tungmetaller i luft på Ny-Ålesund var minst en størrelsesorden lavere enn konsentrasjoner på flere målesteder i Nord-Norge, og to størrelsesordener lavere enn konsentrasjoner på Kola-halvøya omkring smelteverk for kopper og nikkel.

5.4.2. Organiske forbindelser luft

Den gjennomsnittlige luftkonsentrasjonen for heksaklorsykloheksan (sum α - og $\gamma-\mathrm{HCH}$) er på $76 \mathrm{pg} / \mathrm{m}^{3}$. I løpet av året varierer konsentrasjonen mellom 38$115 \mathrm{pg} / \mathrm{m}^{3}$. Det forekommer ingen utpreget sesongvariasjon, men det kan se ut som om det i sommerhalvåret kan være noe lavere konsentrasjoner av HCH (figur 5.3). NILU har foretatt målinger av HCH på Ny-Ålesund fra begynnelsen av 80 -årene (Oehme et al., 1995; Oehme et al., under trykking). Sammenlignet med tidligere år har α-HCH konsentrasjonen avtatt siden begynnelsen av 80 -årene (figur 5.4). I løpet av de siste tre år har den årlige nedgang i HCH vært på 6-8 $\mathrm{pg} / \mathrm{m}^{3}$. Dette skyldes høyst sannsynlig redusert bruk av teknisk HCH som er
erstattet med bruk av ren γ-HCH (lindan). For γ-HCH har det ikke vært signifikant endring over dette tidsrommet.

Figur 5.3: Ukentlig luftkonsentrasjon av HCH (sum $\alpha-$ og γ-HCH) i 1995.

Figur 5.4: α-HCH i luft i perioden mars-april, $N y$-Alesund.

Konsentrasjonen av klordaner (sum trans- og cis-klordan og trans- og cisnonaklor) varierer mellom $1 \mathrm{og} 5 \mathrm{pg} / \mathrm{m}^{3}$. Den høyeste konsentrasjonen ble målt i uke 3. Det forekommer ingen utpreget sesongvariajon. Årsmiddelkonsentrasjonen på $2,19 \mathrm{pg} / \mathrm{m}^{3}$ er noe høyere enn i $1993\left(2,65 \mathrm{pg} / \mathrm{m}^{3}\right)$, men lavere enn i 1994 ($2,2 \mathrm{pg} / \mathrm{m}^{3}$).

Årsmiddelet for sum DDT er på $1,97 \mathrm{pg} / \mathrm{m}^{3}$. Dette er tredjeparten av konsentrasjonen i 1994. Konsentrasjonen av sum DDT varierer mellom $0,33-6,14 \mathrm{pg} / \mathrm{m}^{3}$. Varisjonen gjennom året viser et sesongvist mønster (figur 5.5). De høyeste konsentrasjonene forekommer i vinterhalvåret. Dette skyldes transport av luft fra lavere breddegrader, da det særlig om vinteren er en værsituasjon som tillater langtransport nordover. Dette er for $\varnothing \mathrm{vrig}$ det motsatte av hva man observerer ved lavere breddegrader hvor man finner de høyeste konsentrasjonene i sommerhalvåret (Hoff et al., 1992). Ved lavere breddegrader vil man i tillegg kunne ha et betydelig bidrag som skyldes en fordampning av DDT i jordsmonnet. Denne vil være korrelert med høye sommertemperaturer.

Figur 5.5: Ukentlig luftkonsentrasjon av DDT (sum o,p'-DDE, p,p'-DDE, o, p'DDD, p, p'-DDD, o, p'-DDT og p,p'-DDT) i 1995.

Gjennom hele året ligger HCB konsentrasjonen på omkring $100 \mathrm{pg} / \mathrm{m}^{3}$. Unntak er i ukene 14 og 23. Den laveste konsentrasjonen ble målt i uke $14\left(41 \mathrm{pg} / \mathrm{m}^{3}\right) \mathrm{og}$ den høyeste i uke $23\left(211 \mathrm{pg} / \mathrm{m}^{3}\right)$. Den gjennomsnittlige årlige konsentrasjonen er på $99 \mathrm{pg} / \mathrm{m}^{3}$. Vi har ikke tilstrekkelig informasjon til å kunne forklare den høye konsentrasjonen i uke 23 ved mulig langtransport fra kontinentet.

Den årlige middelkonsentrasjonen var omtrent den samme i 1993 og 1994.
Figur 5.6 viser summen av PCB (10 kongenerer) gjennom året. Det ser ikke ut til å forekomme noen utpreget sesongvariasjon i PCB-konsentrasjonen i motsetning til hva man finner på lavere breddegrader (Halsall et al., 1995; Hoff et al., 1992; Haugen, under trykking) der PCB konsentrasjonen er korrelert med lufttemperaturen. Dette indikerer at bidraget fra lokal eller regional reemisjon av PCB er ubetydelig. De mest flyktige PCB-kongenerene (PCB 28, 31 og 52) utgjør over

90\% av den totale PCB konsentrasjonen. Dette er er typisk for luft fra bakgrunnsområder, hvor man hovedsakelig kan regne med å finne de mest flyktige PCBkomponentene.

Figur 5.6: Ukentlig luftkonsentrasjon av PCB (sum PCB-28, -31, -52, -101, -105, -118, -138, -153, -156 og -180) i 1995.

Konsentrasjonen varierer mellom 12 til $300 \mathrm{pg} / \mathrm{m}^{3}$ i løpet av året. De høyeste konsentrasjonene ble målt i uke 8 og 17 .

Trajektorieberegninger indikerer at det i uke 8 har forekommet transport av luftmasser fra \emptyset st-Europa til Ny-Ålesund som kan forklare den $ø$ kede PCBkonsentrasjonen. For uke 17 har luftmassene kommet fra nord og vest.

I 1993 var årsmiddelkonsentrasjonen (basert på målinger fra april-desember) av sum PCB $13,1 \mathrm{pg} / \mathrm{m}^{3}$. I begynnelsen av 1994 er det observert en betydelig $ø \mathrm{kning}$ i de mest flyktige PCB-kongenerer (PCB-28, 31 og 52) som ser ut til å ha vedvart også i 1995. Årsmiddelkonsentrasjonen i 1994 og 1995 er henholdsvis 112,2 og $68,2 \mathrm{pg} / \mathrm{m}^{3}$. Den betydelige $\varnothing \mathrm{kningen}$ siden begynnelsen av 1994 kan tyde på en mulig kontaminering fra en lokal PCB-kilde.

Ukentlige konsentrasjoner av polysykliske aromatiske hydrokarboner (PAH) i luft er gjengitt i figur 5.7. Den utpregete sesongvise fordeling av PAH gjenspeiler den årlige transport av luftmasser fra lavere breddegrader som finner sted i vinterhalvåret og tidlig om våren. Dette er i samsvar med hva som er observert i kanadisk del av Arktis (Fellin et al., 1996). De mest flyktige PAH-forbindelsene, naftalenene, utgjør 70-90\% av totalkonsentrasjonen av PAH. Årsmiddelkonsentrasjonen for 1995 er $5,12 \mathrm{ng} / \mathrm{m}^{3}$ som er noe lavere enn i $1994\left(7,2 \mathrm{ng} / \mathrm{m}^{3}\right)$.

Figur 5.7: Ukentlig luftkonsentrasjon av PAH (33 PAH komponenter) i 1995.

Referanser

Berge, E., Styve, H. og Simpson, D. (1995) Status of the emission data at MSC-W. Oslo, The Norwegian Meteorological Institute (EMEP/MSC-W Report 2/95).

Brorström-Lundén, E. (1995) Measurements of semivolatile organic compounds in air and deposition. Dr. Thesis, Dept. Anal. Mar. Chemistry, Göteborg.

Cleemann, M., Poulsen, M.E. og Hilbert, G. (1995) Long distance transport deposition of lindane in Denmark. NMR seminar, Nov. 14-16, 1994 (Tema Nord 1995:558).

DNMI (1995-96) Klimatologisk månedoversikt for januar 1995-desember 1995. Oslo, Det norske meteorologiske institutt.

Dollard, G.J. og Vitols, V. (1980) Wind tunnel studies of dry deposition of SO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ aerosols. In: Internat. conf. on impact of acid precipitation. Sandefjord 1980. Ed. by D. Drabløs and A. Tollan. Oslo-Ås (SNSFprosjektet), s. 108-109.

Dovland, H. og Eliassen, A. (1976) Dry deposition on snow surface. Atmos. Environ., 10, 783-785.

ECE (1990) Draft manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. Geneva, Convention on long-range transboundary air pollution.

ECE (1994) Critical Levels for Ozone; a UN-ECE workshop report, Bern 1993. Ed. by J. Fuhrer and B. Achermann. Liebfeld-Bern, Swiss Federal Station for Agricultural Chemistry. (Schriftenreihe der FAC Liebfeld, 16).

EU (1994) Bekendtgørelse om overvågning af luftens indhold af ozon.
København, Miljøministeriet (Miljøministeriets bekendgørelse nr. 184, 1994).
Fellin, P., Barrie, L.A., Dougherty, D., Toom, D., Muir, D., Grift, N., Lockhart, L. og Billeck, B. (1996) Air monitoring in the Arctic: results for selected persistent organic pollutants for 1992. Environ. Toxic. and Chem., 15, 253-261.

Ferm, M. (1988) Measurements of gaseous and particulate NH_{3} and HNO_{3} at a background station: Interpretation of the particle composition from the gas phase concentrations. Proceeding from Cost 611 Workshop Villefrance sur Mere, 3-4 May 1988.

Fowler, D. (1980) Removal of sulphur and nitrogen compounds from the atmosphere in rain and by dry deposition. In: Internat. conf. on impact of acid precipitation. Sandefjord 1980. Ed. by D. Drabløs and A. Tollan. Oslo-Ås (SNSF- prosjektet), s. 22-32.

Garland, J.A. (1978) Dry and wet removal of sulfur from the atmosphere. Atmos. Environ., 12, 349-362.

Gilbert, R.O. (1987) Statistical methods for environmental pollution monitoring. New York, Van Nostrand Reinhold Co.

Halsall, C.J., Lee, R.G.M., Coleman, P.J., Burnett, V., Harding-Jones, P. and Jones, K.C. (1995) PCBs in U.K. Urban Air. Environ. Sci. Technol, 29, 2368-2376.

Hanssen, J.E., Rambæk, J.P., Semb, A. og Steinnes, E. (1980) Atmospheric deposition of trace elements in Norway. In: Internat. conf. on impact of acid precipitation. Sandefjord 1980. Ed. by D. Drabløs and A. Tollan. Oslo-Ås (SNSF- prosjektet), s. 116-117.

Haugen, J.E. (1996) Determination of polychlorinated compounds in ambient air: Methodology and quality assurance. In: EMEP workshop on Heavy Metals and Persistent Organic Pollutants, Beekbergen, Nederland, 3-5 mai 1994.

Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker Jr., R.P. and Matt, D.R. (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, Soil Poll., 36, 311-329.

Hindar, A., Henriksen, A., Tørseth, K., and Semb, A. (1994) Acid water and fish death. Nature, 372, 327-328.

Hjellbrekke, A.G. (1995) Ozone Measurements 1990-1992. Kjeller, Norsk institutt for luftforskning (EMEP/CCC-Report 4/95).

Hoff, R.M., Muir, C.G. og Grift, N.P. (1992) Annual cycle of polychlorinated biphenyls and organohalogen pesticides in air in Southern Ontario. 1. Air concentration data. Environ. Sci. Techn., 26, 266-275.

Journel, A.G. and Huijbregts, C.J. (1981) Mining Geostatistics. London, Academic Press.

Küppers, K., Boomers, J., Hestermann, C., Hanstein, S. and Guderian, R. (1994) Reaction of forest trees to different exposure profiles of ozone dominated air pollution mixtures. In: Critical levels for ozone, a UN-ECE workshop report, Bern 1993. Ed. by J. Fuhrer and B. Achermann. Liebfeld-Bern, Swiss Federal Station for Agricultural Chemistry. (Schriftenreihe der FAC Liebfeld, 16). s. 98-110.

OECD (1982) Issues and Challenges for OECD Agriculture in the 1980s. Paris, Organisation for Economic Co-operation and Development. (AGRI/WPI, 82, 5, Statistical Annex).

Oehme, M. og Stray, H.(1982) Quantitative determination of ultra-traces of chlorinated compounds in high-volume air samples from the Arctic using polyurethane foam as collection medium. Fresenius Z. Anal. Chem., 311, 665-673.

Oehme, M., Haugen, J.-E. og Schlabach, M. (1995) Ambient air levels of persistent organochlorines in spring 1992 at Spitsbergen and the Norwegian mainland: Comparison with 1984 results and quality control measures. Sci. Total Environ., 160/161, 139-152.

Oehme, M., Haugen, J.-E. og Schlabach, M. (1995) Seasonal Changes and Relations between Levels of Organochlorines in Arctic Ambient Air. First Results of an All Year Round Monitoring Program at Ny-Ålesund, Svalbard, Norway. Environ Sci. Techn.

Rühling, Å., Rasmussen, L., Pilegaard, K., Mäkinen, A. and Steinnes, E. (1987) Survey of atmospheric heavy metal deposition in the Nordic countries in 1985 - monitored by moss analyses. København, The Nordic Council of Ministers (NORD 1987:21).

Rühling, \AA. et al., (1992) Atmosferic heavy metal depositions in Northern Europe 1990. København, The Nordic Council of Ministers (NORD 1992: 12).

Semb, A. (1978) Deposition of trace elements from the atmosphere in Norway. Oslo-Ås (SNSF FR 13/78).

Statens forurensningstilsyn (1981) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1980. Oslo (Statlig program for forurensningsovervåking. Rapport 26/81).

Statens forurensningstilsyn (1982) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1981. Oslo (Statlig program for forurensningsovervåking. Rapport 64/82).

Statens forurensningstilsyn (1983) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1982. Oslo (Statlig program for forurensningsovervåking. Rapport 108/83).

Statens forurensningstilsyn (1984) Overvåking av langtran sportert forurenset luft og nedbør. Årsrapport 1983. Oslo (Statlig program for forurensningsovervåking. Rapport 162/84).

Statens forurensningstilsyn (1985) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1984. Oslo (Statlig program for forurensningsovervåking. Rapport 201/85).

Statens forurensningstilsyn (1986a) The Norwegian monitoring programme for long-range transported air pollutants. Results 1980-84. Oslo (Statlig program for forurensningsovervåking. Rapport 230/86).

Statens forurensningstilsyn (1986b) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1985. Oslo (Statlig program for forurensningsovervåking. Rapport 256/86).

Statens forurensningstilsyn (1987) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1986. Oslo (Statlig program for forurensningsovervåking. Rapport 296/87).

Statens forurensningstilsyn (1988) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1987. Oslo (Statlig program for forurensningsovervåking. Rapport 333/88).

Statens forurensningstilsyn (1989) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1988. Oslo (Statlig program for forurensningsovervåking. Rapport 375/89).

Statens forurensningstilsyn (1991a) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1989. Oslo (Statlig program for forurensningsovervåking. Rapport 437/91).

Statens forurensningstilsyn (1991c) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1990. Oslo (Statlig program for forurensningsovervåkning. Rapport 466/91).

Statens forurensningstilsyn (1992a) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1991. Oslo (Statlig program for forurensningsovervåkning. Rapport 506/92).

Statens forurensningstilsyn (1992b) Virkninger av luftforurensning på helse og miljø: Anbefalte luftkvalitetskriterier. Oslo (SFT-rapport 92:16).

Statens forurensningstilsyn (1993) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1992. Oslo (Statlig program for forurensningsovervåkning. Rapport 533/93).

Statens forurensningstilsyn (1994) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1993. Oslo (Statlig program for forurensningsovervåkning. Rapport 583/94).

Statens forurensningstilsyn (1995) Overvåking av langtran sportert forurenset luft og nedbør. Årsrapport 1994. Oslo (Statlig program for forurensningsovervåkning. Rapport 628/95).

Tørseth, K. og Hermansen, O. (1995) Program for terrestrisk naturovervåking. Overvåking av nedbørkjemi i tilknytning til feltforskningsområdene, 1994. Kjeller (NILU OR 33/95).

Tørseth, K., Mortensen, L. og Hjellbrekke, A.G. (1996) Kartlegging av bakkenær ozon etter tålegrenser basert på akkumulert dose over 40 ppb . Kjeller (NILU OR 19/96).

Venn, K., Aamlid, D., Sletnes, A. I. og Tørseth, K. (1995) Skogskadesituasjonen i Norge. Status 1994. Ås (Rapport Skogforsk 23/95: 1-19).

Voldner, E.C. and Sirois, A. (1986) Monthly mean spatial variations of dry deposition velocities of oxides of sulphur and nitrogen. Water, Air, Soil Poll., 30, 179-186.

Voldner, E.C. and Li, Y.F. (1995) Global usage of selected persistent organochlorines. Sci. Total Environ., 160/161, 201-210.

Tables, figures and appendices

Table 1.1 Weighted annual mean concentrations and wet depositions of chemical components in precipitation at Norwegian background stations in 1995.

Table 1.2 Average significant mean changes in the annual mean concentrations of seasalt corrected sulphate in precipitation at Norwegian background measuring sites, and sites with significant changes in the annual mean concentrations of nitrate, ammonium and magnesium.

Table 2.1 Annual weighted mean concentrations in precipitation ($\mu \mathrm{g} / \mathrm{l}$) of heavy metals at Norwegian background stations, 1995.

Table 2.2 Annual wet depositions ($\mu \mathrm{g} / \mathrm{m}^{2}$) of heavy metals at Norwegian background stations, 1995.

Table 3.1 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily and 2 and 3 days mean concentrations of sulphur dioxide in the air at Norwegian background stations in 1995.

Table 3.2 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily and 2 and 3 days mean concentrations of particulate sulphate in the air at Norwegian background stations in 1995.

Table 3.3 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily mean concentrations of nitrogen dioxide in the air at Norwegian background stations in 1995.

Table 3.4 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily, 2 and 3 days mean concentrations of $\mathrm{NO}_{3}{ }^{-}$ $+\mathrm{HNO}_{3}$ in the air at the Norwegian background stations in 1995.

Table 3.5 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily, 2 and 3 days mean concentrations of $\mathrm{NH}_{4}{ }^{+}$ $+\mathrm{NH}_{3}$ in the air at the Norwegian background stations in 1995.

Table 3.6 The dry depositions, as calculated from seasonal mean concentrations of sulphur and nitrogen components in air and empirically evaluated dry deposition velocities, and measured seasonal wet depositions at Norwegian background stations.

Table 3.7 Average mean changes in the annual mean concentrations of sulphur dioxide and particulate sulphate in the air at Norwegian background stations during the period 1980-95.

Table 4.1 Air quality guidelines for ozone.
Table 4.2 Critical levels for ozone used by the European Union.

Table 4.3 Number of hours (h) and days (d) with hourly mean concentrations of ozone larger than 100,150 and $180 \mu \mathrm{~g} / \mathrm{m}^{3}$, and the largest hourly mean concentrations in 1995.

Table 4.4 Number of days per month with one or more 8 h -mean concentrations of ozone larger than $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, April-September 1995.

Table 4.5 Mean concentrations of ozone for 7 daytime hours (09-16 hours) in the growing season (April-September, 1995).

Table 4.6 Data coverage and calculated ozone exposure according to the AOT40 concept for crops, 1. May - 1. August (unit ppb h).

Table 4.7 Data coverage and calculated ozone exposure according to the AOT40 concept for forests, 1. April-1. Oktober (unit ppb h).

Table 4.8 Number of days per month with one or more 8 h-mean concentrations of ozone larger than $110 \mu \mathrm{~g} / \mathrm{m}^{3}, 1995$.

Table 4.9 Number of days per month with daily mean concentrations of ozone larger than $65 \mu \mathrm{~g} / \mathrm{m}^{3}, 1995$.

Table 4.10 Monthly and yearly mean concentrations of ozone $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ in 1994.
Table 4.11 Number of episode-days and the highest hourly mean concentrations during the period 1984-1995.

Table 5.1 Monthly and annual average concentrations of $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}$, Ni, V and As at Lista measured in fine fraction of particles in 1995 (in $\mathrm{ng} / \mathrm{m}^{3}$).

Table 5.2 Monthly and annual average concentrations of $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}$, Ni, V and As at Lista measured in both coarse and fine fraction of particles in 1995 (in ng/m3).

Table 5.3 Monthly average air concentrations of Hg at Lista in 1995 (in $\mathrm{ng} / \mathrm{m}^{3}$).

Table 5.4 Monthly average concentrations of Hg in precipitation at Lista in 1995 (in ng/l).

Table 5.5 Monthly average air concentrations of HCHs and HCB at Lista in 1995 (in pg/m3).

Table 5.6 Monthly average concentrations of HCHs and HCB in precipitation at Lista in 1995 (in ng/l).

Table 5.7 Comparison of mean annual concentrations of $\mathrm{Cd}, \mathrm{Hg}, \mathrm{As}, \mathrm{Cr}, \mathrm{Cu}$, Ni, Pb, and Zn at Lista during the period from 1991 through 1995 (in $\mu \mathrm{g} / \mathrm{m}^{3}$).

Figure 1 Norwegian background stations, 1995.
Figure 1.1 Annual mean concentrations and wet deposition of sulphate and strong acid (from pH) in Norway in 1995.

Figure 1.2 Annual mean concentrations of nitrate, ammonium, sodium and deposition of nitrogen compounds in precipitation in Norway in 1995.

Figure 1.3 Monthly weighted mean concentrations and mean wet deposition of sulphate in 1995 and in the proceeding years.

Figure 1.4 Annual mean concentrations of sulphate, nitrate, ammonium and pH in precipitation at Norwegian background stations in the period 1973-1995.

Figure 1.5 Annual weighted mean concentrations of sulphate (corrected for sea salts), nitrate and ammonium, averaged annual precipitation amounts and wet depositions of sulphate during the period 1974-1995, based on 7 representative stations in Southern Norway (Birkenes, Lista, Skreådalen, Vatnedalen, Treungen, Gulsvik, Løken).

Figure 1.6 Annual wet deposition of sulphate at the Norwegian EMEPstations in the period 1973-1995.

Figure 2.1 Monthly mean concentrations of lead, cadmium, and zinc, in precipitation at Norwegian background stations in 1995.

Figure 2.2 Mean concentrations in precipitation of lead, cadmium and zinc at Norwegian stations in 1976, August 1978-June 1979, in 1980 (FebruaryDecember) and in the period 1981-1995.

Figure 3.1 Monthly mean concentrations of sulphur dioxide, particulate sulphate, nitrogen dioxide, (ammonium + ammonia) and (nitrate + nitric acid) in air at Norwegian background stations in 1995.

Figure 3.2 Total deposition (wet and dry) of sulphur-S ($\left.\mathrm{SO}_{2}, \mathrm{SO}_{4}{ }^{2-}\right)$ and nitrogen- $\mathrm{N}\left(\mathrm{NO}_{2}, \mathrm{NH}_{4}{ }^{+}, \mathrm{NH}_{3}, \mathrm{NO}_{3}^{-}, \mathrm{HNO}_{3}\right)$ on Norwegian background stations, 1995.

Figure 3.3 Annual mean concentrations of airborne particulate sulphate at Norwegian background stations in the period 1973-1995.

Figure 3.4 Annual mean concentrations of sulphur dioxide in air at Norwegian background stations in the period 1978-1995.

Figure 3.5 Mean concentrations of sulphur dioxide and particulate sulphate for the summer months (April-September) and winter months (October-March) in the period 1978-1995 at Birkenes and Jergul.

Figure 4.1 Average daytime 7 hour-concentrations of ozone (09-16 hours) for the growing season (in $\mu \mathrm{g} / \mathrm{m}^{3}$) at two Norwegian monitoring sites, 1981-1995.

Figure 4.2 Number of days with 8 hour-mean concentrations of ozone higher than $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, measured in the season April-September 1995.

Figure 4.3 Average daytime 7 hour-concentrations of ozone ($09-16$ hours) for the growing season April-September 1995, in $\mu \mathrm{g} / \mathrm{m}^{3}$.

Figure 4.4 Monthly mean concentrations of ozone in $1995\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ at Prestebakke, Jeløya, Nordmoen and Osen.

Figure 4.5 Monthly mean concentrations of ozone in $1995\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ at Langesund, Klyve and Haukenes.

Figure 4.6 Monthly mean concentrations of ozone in $1995\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ at Birkenes, Voss and Kårvatn.

Figure 4.7 Monthly mean concentrations of ozone in $1995\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ at Tustervatn, Jergul, Svanvik and Zeppelin-mountain.

Figure 4.8 Average diurnal variations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) at Prestebakke, Jeløya, Nordmoen and Osen, April-September 1995.

Figure 4.9 Average diurnal variations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) at Langesund, Klyve and Haukenes, April-September 1995.

Figure 4.10 Average diurnal variations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) Birkenes, Voss and Kårvatn, April-September 1995.

Figure 4.11 Average diurnal variations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) at Tustervatn, Jergul, Svanvik and Zeppelin-mountain, April-September 1995.

Tables A.1.1-A.1.19 Monthly and annual mean concentrations and wet depositions of main compounds in precipitation, 1995

Table A.1.20 The 10 largest daily wet depositions of non marine sulphate at Norwegian background stations in 1995.

Table A.1.21 Annual mean concentrations in precipitation, wet depositions and estimated dry deposition at Norwegian background stations during the period 1973-1995.

Tables A.2.1-A.2.16 Monthly and annual mean concentrations and wet depositions of trace elements in precipitation, 1995

Table A.2.17 Mean concentrations of heavy metals in precipitation at Norwegian background stations in 1976, August 1978-June 1979, in 1980 (FebruaryDecember), and in the period 1981-1995.

Tables A.3.1-A.3.10 Monthly and annual mean concentrations of airborne compounds at Norwegian background stations in 1995.

Table A.3.11 Annual mean concentrations of sulphur and nitrogen compounds in air at Norwegian background stations during the period 1973-1995.

Figure 5.1 Weekly air concentration of HCH (sum α - and γ-HCH) in 1995.
Figure 5.2 Weekly concentration in precipitation of HCH (sum α - and $\gamma-\mathrm{HCH})$ in 1995. Missing data represent periods without precipitation.

Figure 5.3 Weekly air concentration of HCH (sum α - og γ-HCH) in 1995.
Figure $5.4 \quad \alpha$-HCH in air during march-april, $\mathrm{Ny}-\AA$ Ålesund.
Figure 5.5 Weekly air concentration of DDT (sum o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT and p,p'-DDT) in 1995.

Figure 5.6 Weekly air concentration of PCBs (sum (sum PCB-28, -31, -52, $-101,-105,-118,-138,-153,-156$ og -180) in 1995.

Figure 5.7 Weekly air concentration of PAH (33 PAH components) in 1995.
B. 1 General information about the background stations in Norway in 1995.
B. 2 Monitoring programme at the Norwegian background stations in 1995.
C. Sampling, chemical analytical methods and quality control.

Vedlegg A

Resultater fra overvåking av luft- og nedbørkjemi

Forklaring til A.1.1-A.2.16

På en del av stasjonene har det enkelte måneder vært få eller ingen tilfeller med tilstrekkelige nedbørmengder for analyser, eller alle konsentrasjonene har vært lavere enn deteksjonsgrensen. Disse tilfellene er behandlet på følgende måte:

Særtilfeller	lkke nedbør- prøvetaking	Ingen nedbør- tilfeller	Målt nedbør, for lite til, eller mangler analyse	Konsentrasjonen under deteksjons-grensen
Konsentrasjon	Åpen	-	-	$<$ (deteksjons-grense)
mm nedbør	Åpen	0	Tall	Tall
Våtavsetning	Åpen	0	-	Tall*

[^0]Tabell A.1.1: Månedlige og årlige middelverdier av pH i nedbøren på norske bakgrunnsstasjoner, 1995.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SE	O	N	DES	R
irkenes	43	4,56	4,25	4,62	4,86	4,48	4,41	4,58	4,63	4,34	4,31	4,44	,47
Søgne	4,41	4,59	4,18	4,60	4,74	4,50	4,22	4,57	4,63	4,36	4,17	4,18	4,45
Lista	4,48	4,71	4,56	4,62	4,45	4,45	4,40	4,53	4,67	4,31	4,33	4,01	4,48
Skreådalen	4,62	4,90	4,81	5,22	5,26	4,92	4,93	4,08	4,94	4,63	4,73	4,44	75
Valle	4,56	4,78	4,39	4,66	5,04	4,82	4,56	3,99	4,78	4,56	4,48	5,11	63
Vatnedalen	4,68	5,04	4,73	4,93	4,91	4,90	4,88	4,22	5,00	4,78	5,13	4,92	4,82
Treungen	4,32	4,60	4,26	4,42	4,73	4,60	5,31	4,13	4,67	4,37	4,40	4,30	4,48
Solhomfjell	4,40	4,65	4,35	4,74	4,60	4,55.	4,57	4,68	4,60	4,30	4,56	4,46	4,51
Mrsvatn	4,60	4,93	4,32	4,51	4,81	4,90	4,84	3,86	4,77	,49	,65	4,39	4,65
Prestebakke	4,48	4,45	4,49	5,50	4,39	4,74	4,33	4,79	4,75	4,19	4,15	4,09	4,45
Ramnes	4,26	4,08	4,33	4,70	4,42	4,61	4,38	6,15	4,73	4,36	4,63	4,52	4,39
Lardal	4,24	4,47	4,31	4,68	4,48	4,66	4,38	4,40	4,69	4,32	4,42	4,41	4,42
Loken	4,40	4,52	4,48	4,87	4,34	4,72	4,58	4,90	4,76	4,36	4,58	4,35	56
Nordmoen	4,37	4,50	4,61	4,86	4,23	4,82	4,47	4,22	4,65	4,41	4,50	4,79	4,49
Fagernes	4,51	4,90	4,43	4,86	5,13	5,25	5,34	4,79	4,57	4,63	5,16	5,38	4,81
Gulsvik	4,28	4,66	4,34	4,65	4,43	4,80	4,82	4,76	4,60	4,53	4,37	4,86	4,54
Osen	4,44	4,63	4,49	5,45	4,41	4,86	4,64	4,26	4,71	4,49	4,74	4,79	4,59
Valdalen	4,55	4,72	4,68	4,55	4,54	4,73	5,07	4,40	4,63	4,76	5,74	5,33	4,68
Ualand	4,45	4,57	4,46	4,66	4,73	4,58	4,64	4,37	4,71	4,37	4,56	4,16	4,51
Egersund	4,41	4,62	4,52	4,58	4,64	4,47	4,57	3,98	4,72	4,26	4,35	4,13	4,44
Vikedal	4,67	4,82	4,70	5,09	4,77	4,82	4,74	4,56	5,05	4,56	4,68	4,77	4,72
Haukeland	4,75	5,18	4,77	5,14	4,68	4,83	4,81	4,65	5,45	4,83	4,86	4,97	4,89
Voss	4,62	4,99	4,72	4,92	4,73	5,33	4,80	4,88	5,28	4,71	4,93	4,68	4,82
Nausta	4,85	5,19	4,75	5,07	4,73	4,86	4,96	4,48	5,58	4,87	5,07	5,04	4,91
Firde	4,83	5,26	4,78	5,11	4,55	4,79	4,89	4,39	5,23	4,94	4,85	5,18	4,91
Kárvatn	5,14	5,28	5,13	5,07	5,17	5,05	5,11	5,04	5,13	5,28	5,29	5,40	5,17
Selbu	5,21	5,24	5,00	5,17	4,62	5,10	5,04	4,79	5,19	5,16	5,03	5,21	5,01
Haylandet	5,24	5,34	5,10	5,55	4,75	5,10	5,06	4,91	5,41	5,25	5,70	5,51	5,20
Namsvatn	5,35	5,28	5,25	5,48	5,25	5,06	4,73	4,97	5,58	5,23	5,44	5,33	5,18
Tustervatn	5,16	5,20	5,14	5,41	5,17	5,11	5,09	5,11	5,17	5,32	5,50	5,37	5,22
Øverbygd	5,18	5,06	5,06	4,71	4,85	5,09	5,03	5,22	5,14	5,10	5,34	5,23	5,13
Jergul	4,69	4,63	4,65	4,56	4,68	4,59	4,95	4,78	4,91	4,94	5,25	5,53	4,76
Svanvik	4,55	4,76	4,96	3,90	4,42	4,60	4,76	4,53	4,36	4,54	5,13	5,39	4,62
Karpdalen	4,33	4,29	4,68	3,57	4,36	4,36	4,80	4,48	4,47	4,62	4,92	4,62	4,52
Ny -Ålesund	6,62	6,97	6,18	6,38	5,58	6,41	6,25	-	6,34	6,66	6,71	5,00	5,26

Tabell A.1.2: Månedlige og årlige middelkonsentrasjoner av sulfat i nedbør på norske bakgrunnsstasjoner, 1995.
Enhet: mg S/l, korrigert for sjøsalt.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP		NOV	DES	
Birke	0,60	0,32	1,10	0,49	0,30	0,50	0,60	0,33	0,36	0,66	,66	2	05
S	0,55	0,33	1,15	0,7	0,4	0,5	1,08	0,69	0,44	0,78	,10	91	0,61
Lista	0,69	0,27	0,70	0,7	1,0	0,7	0,	0,7	0,40	0,93	79	21	0,67
Skreádalen	0,38	0,20	0,36	0,25	0,24	0,25	0,33	0,62	0,16	0,37	0,28	, 0	0,30
㳓	0,32	,13	0,55	2,37	0,20	0,3	0,44	2,64	0,20	0,36	0,31	0,46	
Vatnedale	0,2	0,07	0,2	0,7	0,3	0,21	0,	1,40	0,26	0,20	0,05	0,11	
Treungen	0,5	0,26	0,72	1,2	0,43	0,37	0,7	1,4	0,3	0,67	6	0,72	
Solhomfjel	0,58	0,25	0,86	0,44	0,55	0,41	0,62	1,28	0,	0,98	0	4	
Møsvatn	0,17	,08	,45	0,76	0,28	0,20	0,23	2,56	0,27	0,37	0,11	0,22	
Prestebakk	0,4	0,4	0,4	0,5	1,6	0,40	0,87	0,	0,45	1,16	8	0,	0,65
Ramnes	1,19	1,06	1,1	0,67	1,1	0,4	1,0	0,	0,	0,71	7	,	0,83
Larda	0,77	0,38	0,94	0,72	0,84	0,40	0,8	0,7	0,42	0,78	0,55	0,55	0,65
Loken	0,57	, 40	0,65	0,45	1,37	0,36	0,65	0,20	0,35	0,67	0,72	0,54	5
Nordmoen	0,5	0,3	0,4	0,28	1,4	0,	0,5	0,8	0,3	0,5	0,38	0,1	0,53
Fagernes	0,28	0,09	0,46	0,26	0,53	0,3	0,1	0,2	0,4	0,28	0,26	0,1	0,32
Gulsvik	0,69	0,30	0,52	1,76	0,9	0,33	0,30	0,45	0,60	0,75	0,60	0,24	0,56
O	0,45	20	0,3	0,3	0,83	0,3	0,4	1,07	0,3	0,38	, 1	0,1	
Valdalen	0,36	,16	0,26	0,6	0,66	0,4	0,33	1,0	0,5	0,27	0,03	0,1	0,4
Ualand	0,48	0,34	0,5	0,3	0,37	0,37	0,5	0,62	0,26	0,58	0,46	0,7	0,4
Egersund	0,52	0,28	0,53	0,60	0,5	0,5	0,63	1,81	0,27	0,81	0,59	0,7	0,5
Vikeda	0,29	0,21	0,47	,28	0,4	0,3	0,4	0,70	0,1	0,4	0,34	0,2	0,35
Haukeland	0,2	0,08	0,3	0,1	0,6	0,4	0,30	0,4	0,0	0,2	0,1	0,1	0,21
Vos	0,27	0,09	0,36	0,1	0,5	0,30	0,26	0,18	0,09	0,25	0,08	0,15	0,21
Nausta	0,16	0,06	0,32	0,1	0,4	0,23	0,18	0,63	0,04	0,18	0,13	0,06	0,1
	0,19	0,06	0,2	0,1	0,	0,25	0,	0,7	0,0	0,1	0,13	0,05	
Kårvatn	0,10	0,05	0,16	0,	0,1	0,1	0,0	0,10	0,0	0,0	0,0	0,0	0,08
Selbu	0,14	0,06	0,14	0,1	0,45	0,21	0,13	0,25	0,09	0,0	0,0	0,0	
Høylandet	0,10	0,12	0,22	0,12	0,58	0,42	0,20	0,24	0,06	0,17	0,05	0,06	0,17
Namsvat	0,	0,06	0,1	0,0	0,3	0,3	0,3	0,20	0,	0,	0,03	0,0	0,16
Tustervatn	0,10	0,07	0,10	0,08	0,1	0,32	0,1	0,1	0,06	0,06	0,03	0,03	,09
Øverby	0,09	0,11	0,09	0,51	0,22	0,28	0,17	0,04	0,20	0,09	0,0	0,0	
Jergul	0,12	0,15	0,25	0,41	0,50	0,45	0,12	0,23	0,21	0,15	0,04	0,10	0,25
Svanvik	0,62	0,31	0,77	2,59	3,07	0,84	0,34	0,63	1,11	0,57	0,16	0,18	0,59
Karpdalen	0,95	0,90	0,48	7,21	1,98	0,88	0,30	0,65	1,33	0,45	0,23	0,40	0,63
Ny -Ålesund	-	1,06	0,60	0,54	0,45	0,71	0,38		0,14	1,03	0,35	0,1	0,30

Tabell A.1.3: Månedlige og airlige middelkonsentrasjoner av nitrat i nedbør på
norske bakgrunnsstasjoner, 1995.
Enhet: mg N/l.

| STASJON | JAN | FEB | MAR | APR | MAI | JUN | JUL | AUG | SEP | OKT | NOV | DES |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | AR \mid

Tabell A.1.4: Månedlige og årlige middelkonsentrasjoner av ammonium i nedbør på norske bakgrunnsstasjoner, 1995.
Enhet: mg N/l.

SJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	S	
irkenes	0,6	0,22	1,02	0,25	0,25	0,29	0,2	0,10	0,1	0,66	0,64	,20	
Søgne	0,4	0,20	1,28	0,3	0,3	0,3	0,6	0,07	0,	0,7	,9	0,58	
Lista	0,57	0,4	0,7	0,6	0,6	0,65	0,4	0,19	0,28	1,04	,96	,2	
Skreådalen	0,29	0,14	0,34	0,24	0,25	0,25	0,36	0,41	0,14	0,24	0,23	0,46	
Valle	0,17	0,05	0,42	1,47	0,14	0,4	0,1	0,87	0,05	0,22	, 3	0,82	
Vatnedale	0,12	0,0	0,14	0,5	0,20	0,	0,33	0,7	0,1	0,05	,03	0,16	
Treungen	0,43	0,1	0,48	0,8	0,26	0,2	1,2	0,3	0,28	0,78	0,6	0,59	, 40
Solhomfjell	0,51	0,14	0,93	0,24	0,29	0,26	0,52	1,29	0,25	1,03	0,74	0,46	0,43
Masvatn	0,0	0,02	0,28	0,48	0,1	0,11	0,16	1,05	0,12	0,15	8	5	
Prestebak	0,27	0,23	0,34	0,35	1,1	0,3	0,36	0,0	0,33	1,0	0,7	0,67	
Ramne	0,9	0,70	0,94	0,4	0,8	0,23	0,63	0,1	0,20	0,67	0,92	0,58	, 61
Lardal	0,54	0,21	0,67	0,46	0,46	0,24	0,49	0,02	0,21	0,78	0,48	0,29	0,42
L-ke	0,4	0,29	0,45	,32	0,70	0,	0,44	0,11	0,21	0,5	0,72	0,70	
Nordmoen	0,3	0,15	0,25	0,1	0,7	0	0,3	0,0	0,1	0,43	0,35	0,11	
Fagernes	0,1	0,10	0,3	0,1	0,2	0,6	0,0	0,1	0,1	0,07	0,24	0,29	0,29
Gulsvik	0,42	0,32	0,53	1,72	0,54	0,27	0,26	0,29	0,41	0,78	1,37	0,37	0,42
Osen	0,20	0,08	,18	0,2	0,	0,3	0,30	0,41	0,09	0,12	0,27	0,10	
Valdale	0,2	0,12	,1	0,3	0,30	0,	0,	0,58	0,2	0,2	0,4	0,92	,37
Ualand	0,2	,13	0,46	0,3	0,	0,1	0,	0,3	0,07	0,38	0,32	0,35	,27
Egersund	0,37	0,13	0,43	0,39	0,32	0,25	0,45	0,97	0,16	0,59	0,44	0,52	0,37
Vikedal	0,	,12	0,3	0,30	,2	0,2	0,3	0,49	0,20	0,23	0,2	0,2	,23
Haukelan	0,14	0,09	0,34	0,18	0,67	0,	0,1	0,6	0,10	0,13	0,1	0,1	
Vo	0,0	,0	0,23	0,0	0,3	0,77	0,18	0,	0,03	0,11	0,05	0,08	
Nausta	0,06	0,02	0,17	0,09	0,35	0,19	0,1	0,4	0,13	0,08	0,25	0,13	0,13
	0,02	,03	0,12	0,07	,43	0,16	0,0	0,4	0,0	0,0	0,07	,0	,08
Kårvatn	0,0	0,03	0,12	0,03	0,10	0,1	0,08	0,08	0,03	0,0	0,06	0,0	0,06
Selbu	0,1	0,04	0,0	0,0	0,21	0,45	0,07	0,13	0,05	0,09	0,04	0,1	
Heylandet	0,15	0,17	0,24	0,20	0,52	0,37	0,23	0,23	0,18	0,21	0,17	0,18	0,2
Namsvatn	0,2	,10	,29	0,15	0,47	0,33	0,3	0,1	0,0	0,17	0,1	,1	0,20
Tustervatn	0,07	0,06	0,07	0,09	0,15	0,3	0,16	0,13	0,1	0,13	0,10	0,13	
$\emptyset \mathrm{verbyg}$	0,08	0,07	0,06	0,16	0,05	0,18	0,20	0,18	0,21	0,06	0,06	0,06	
Jergul	0,04	0,03	0,05	0,08	0,19	0,08	0,13	0,05	0,10	0,07	0,01	0,05	0,07
Svanvik	0,45	0,23	0,55	0,92	0,69	0,38	0,05	0,11	0,26	0,1	0,12	0,2	0,19
Karpdalen	0,49	0,22	0,15	1,09	0,60	0,16	0,07	0,22	0,59	0,11	0,07	0,15	0,18
Ny -Ålesund	-	0,08	0,10	0,10	0,12	0,59	0,10		0,73	0,39	0,07	0,08	0,1

Tabell A.1.5: Månedlige og årlige middelkonsentrasjoner av kalsium i nedbør på norske bakgrunnsstasjoner, 1995.
Enhet: mg/l.

STASJON	JAN	EB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV		
Birkenes	0,12	0,10	0,16	0,19	0,06	0,04	0,05	0,05	0,05	0,10	16	0	
Søgne	0,27	0,15	0,3	0,36	0,10	0,26	0,19	0,33	0,09	0,21	0,44	23	
Lista	1,96	1,52	0,98	1,02	0,56	0,32	0,42	2,0	0,72	60	,20	0,44	
Skreådalen	0,12	0,18	0,18	0,49	0,28	0,16	0,12	0,49	0,15	0,12	3	0,09	,
Valle	0,07	09	0,11	1,73	0,14	0,19	0,12	1,46	0.11	0,09	0,07	0,09	
Vatnedalen	0,0	0,0	,06	0,	0,14	0,12	,2	0,14	0,12	,0	,13	,06	
Treungen	0,08	0,03	0,08	0,4	0,06	,06	0,61	0,47	0,09	,0	08	, 08	
Solhomfjell	0,11	0,07	0,10	0,21	0,0	0,26	0,06	0,	3	0,23	,33	0,18	
Masvatn	0,02	0,03	0,07	0,32	0,07	0,05	0,05	0,10	0,05	0,07	0,06	0,07	
Prestebakk	0,09	0,12	, 1	0,1	0,41	0,11	0,10	0,	0,27	0,28	,25	,16	,18
Ramnes	0,18	0,33	0,19	0,45	0,35	0,10	0,34	0,00	0,20	0,2	0,61	,	0,23
Lardal	0,10	0,05	0,10	0,35	0,	0,0	0,	0,	0,	0,11	1	0,11	
Loken	0,30	0,13	0,27	0,23	0,31	0,07	0,18	0,55	0,18	0,22	1,10	0,18	
Nordmoen	0,0	,05	0,0	0,1	,2	0,1	0,22	0,	0,11	0,10	0,1	,10	0,12
Fagerne	0,05	0,07	0,1	0,30	0,38	0,1	0,	0,1	0,11	0,08	0,12	0,21	
Gulsvik	0,0	0,0	0,26	1,0	0,	0,07	0,0	0,13	0,19	0,15	0,30	0,17	
O		0,07	0,08	0,58	0,13	0,08	0,13	0,17	0,06	0,06	0,08	,29	,12
Valdalen	0,06	,06	0,0	0,1	0,1	0,07	0,25	0,1	0,1	0,08	0,2	0,46	,13
Ualand	0,1	0,16	0,2	0,2	0,08	0,0	0,05	0,32	0,1	0,15	0,09	0,08	
Egersun	0,33	0,23	0,39	0,42	0,16	0,	0,10	0,42	0,18	0,28	0,23	0,21	0,26
Vikedal	0,12	0,19	0,16	0,24	0,10	,06	0,07	0,09	, 1	0,1	,09	,0	
Haukeland	0,08	0,14	0,1	0,15	0,1	0,0	0,0	0,2	0,3	0,06	0,09	0,0	
Voss	0,09	0,07	0,08	,12	0,2	0,0	0,0	0,05	0,10	0,07	0,07	0,04	0,0
Nausta	0,0	0,12	0,08	0,08	0,07	0,09	0,05	0,06	0,20	0,06	0,07	0,0	0,08
Fgrde	0,10	0,19	0,10	0,19	0,09	0,07	0,04	0,1	0,21	0,07	0,1	0,07	
Kårvat	0,1	29	0,1	0,1	0,1	0,0	0,0	0,0	0,04	0,0	0,0	0,1	0,10
Selbu	0,0	,09	0,09	0,17	0,06	0,07	0,06	0,0	0,07	0,0	0,05	0,15	0,08
Høylandet	0,08	0,26	0,09	0,24	0,10	0,50	0,16	0,10	0,09	0,14	0,25	0,1	0,1
Namsvatn	0,	0,09	0,0	0,08		0,08	0,06	,1	0,43	0,1	0,07	0,1	
Tustervatn	0,15	0,10	0,07	0,15	0,20	0,19	0,07	0,0	0,10	0,1	0,1	0,3	0,13
Øverbyg	0,09	0,06	0,07	0,3	0,09	0,12	0,05	0,40	0,17	0,06	0,07	0,1	
Jergul	0,10	0,06	0,07	0,09	0,23	0,05	0,10	0,02	0,08	0,05	0,12	0,23	0,06
Svanvik	0,21	10	0,28	0,5	1,17	0,09	0,05	0,12	0,22	0,1	0,14	0,1	0,
Karpdalen	0,32	0,31	0,14	0,85	0,48	0,10	0,23	0,06	0,30	0,14	1,41	0,56	0,35
Ny-Ålesund	-	5,29	1,42	1,35	0,62	1,09	2,19		0,58	2,93	2,36	0,4	0,89

Tabell A.1.6: Månedlige og årlige middelkonsentrasjoner av kalium i nedbør på norske bakgrunnsstasjoner, 1995.
Enhet: mg/l.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	0,12	0,09	0,11	0,05	0,04	0,07	0,04	0,04	0,04	7	0,14	,	0,08
Søgne	0,31	0,18	0,28	0,18	0,12	0,18	0,13	0,54	0,12	0,38	0,37	0,24	0,22
Lista	1,79	1,54	0,86	0,73	0,29	0,42	0,36	1,44	0,61	37	1,05	, 40	1,03
Skreådalen	0,20	0,19	0,23	0,28	0,15	0,16	0,16	0,37	0,18	0,15	0,15	0,16	0,18
Valle	0,08	0,10	0,08	0,22	0,02	0,25	0,10	1,06	0,04	0,07	0,05	0,12	0,10
Vatnedalen	0,04	0,07	0,04	0,17	0,07	0,07	0,49	0,14	0,14	0,11	0,04	0,08	0,12
Treungen	0,08	0,03	0,04	0,09	0,05	0,13	0,32	0,03	0,02	0,07	0,05	0,06	0,07
Solhomfjell	0,11	0,06	0,08	0,04	0,03	0,09	0,06	0,42	0,03	0,10	0,42	0,35	0,08
Mosvatn	0,03	0,01	0,04	0,05	0,04	0,07	0,02	0,06	0,01	0,04	0,04	0,08	0,03
Prestebakke	0,08	0,10	0,12	0,03	0,23	0,18	0,05	0,51	0,12	0,17	0,27	0,13	0,15
Ramnes	0,36	0,39	0,25	0,17	0,38	0,10	0,16	0,70	0,07	0,15	0,31	0,49	0,23
Lardal	0,09	0,04	0,07	0,05	0,10	0,08	0,06	0,04	0,02	0,10	0,12	0,05	0,07
L-ken	0,10	0,11	0,15	0,07	0,24	0,12	0,10	0,06	0,07	0,15	0,23	0,22	0,12
Nordmoen	0,06	0,03	0,02	0,02	0,11	0,34	0,03	0,01	0,03	0,07	0,06	0,02	0,09
Fagernes	0,03	0,02	0,05	0,10	0,05	0,55	0,09	0,15	0,04	0,05	0,08	0,05	0,17
Gulsvik	0,06	0,06	0,06	0,46	0,05	0,12	0,08	0,08	0,01	0,29	0,24	0,05	0,09
Osen	0,05	0,06	0,04	0,13	0,04	0,24	0,06	0,07	0,09	0,13	0,06	0,04	0,10
Valdalen	0,07	0,07	0,03	0,04	0,06	0,12	0,25	0,11	0,08	0,18	0,59	1,70	0,20
Ualand	0,12	0,14	0,24	0,10	0,03	0,04	0,03	0,09	0,09	0,11	0,07	0,06	0,11
Egersund	0,24	0,19	0,23	0,15	0,09	0,07	0,08	0,13	0,14	0,21	0,16	0,10	0,18
Vikedal	0,09	0,13	0,10	0,11	0,03	0,06	0,04	0,07	0,14	0,10	0,04	0,1	0,09
Haukeland	0,07	0,12	0,08	0,12	0,09	0,15	0,04	0,16	0,18	0,08	0,04	0,08	0,09
Voss	0,08	0,06	0,04	0,09	0,13	0,76	0,08	0,09	0,09	0,05	0,03	0,03	0,08
Nausta	0,05	0,10	0,06	0,05	0,02	0,09	0,06	0,04	0,18	0,05	0,04	0,03	0,06
Førde	0,06	0,15	0,06	0,14	0,02	0,11	0,03	0,06	0,16	0,07	0,06	0,06	0,08
Kárvatn	0,13	0,12	0,10	0,08	0,10	0,09	0,03	0,02	0,03	0,09	0,08	0,08	0,08
Selbu	0,04	0,07	0,06	0,06	0,02	0,39	0,03	0,03	0,03	0,10	0,03	0,08	0,08
Høylandet	0,08	0,27	0,08	0,07	0,04	0,33	0,07	0,09	0,08	0,13	0,10	0,13	0,12
Namsvatn	0,04	0,07	0,03	0,04	0,01	0,04	0,04	0,01	0,03	0,08	0,03	0,11	0,05
Tustervatn	0,18	0,11	0,09	0,15	0,05	0,16	0,08	0,10	0,08	0,09	0,13	0,29	0,13
Øverbygd	0,11	0,07	0,06	0,09	0,03	0,21	0,08	0,14	0,17	0,06	0,06	0,11	0,10
Jergul	0,05	0,04	0,08	0,07	0,05	0,07	0,04	0,01	0,02	0,08	0,10	1,31	0,06
Svanvik	0,12	0,07	0,14	0,25	0,44	0,05	0,04	0,18	0,06	0,10	0,09	0,11	0,10
Karpdalen	0,43	0,40	0,10	0,75	0,18	0,04	0,04	0,04	0,08	0,15	0,34	0,44	0,16
Ny -Ålesund	-	0,93	0,33	0,19	0,10	1,01	0,64	.	0,29	0,49	0,30	0,25	0,33

Tabell A.1.7: Månedlige og årlige middelkonsentrasjoner av magnesium i nedbør på norske bakgrunnsstasjoner, 1995.
Enhet: mg/l.

| STASJON | JAN | FEB | MAR | APR | MAI | JUN | JUL | AUG | SEP | OKT | NOV | DES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | AR \mid

Tabell A.1.8: Månedlige og årlige middelkonsentrasjoner av natrium i nedbør på norske bakgrunnsstasjoner, 1995.
Enhet: mg/l.

ASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	
Birkenes	2,3	1,99	1,89	0,43	0,20	0,32	0,20	0,33	0,52	1,11	1,47	29	
S	5,92	3,00	4,44	0,98	0,5	0,53	0,6	1,44	1,28	3,22	5,70	35	2,68
Lista	47,28	36,80	21,33	18,40	6,01	5,87	7,83	37,85	17,17	33,97	25,93	9,10	25,68
Skreådalen	90	3,24	2,49	3,21	0,41	0,42	0,53	0,81	1,93	1,31	0,56	0,51	1,79
Valle	0,89	1,30	1,37	1,16	0,1	0,07	0,26	0,63	0,38	0,94	0,30	0,17	
Vatnedale	0,46	,00	0,46	2,63	0,55	,0,	0,3	0,12	2,6	,36	0,31	0,70	
Treung	1,33	,55	0,78	0,6	0,0	0,08	0,3	0,15	0,2	0,76	0,45	0,20	,56
Solhon	1,80	0,52	1,0	0,37	0,1	0,18	0,12	0,39	0,22	0,75	,	0,68	0,6
Møsvatn	0,	,37	,42	0,36	0,0	0,05	0,05	0,05	0,07	0,25	0,09	0,17	
Prestebal	1,05	2,33	1,18	0,28	0,29	0,3	0,68	0,6	0,97	2,13	3,59	1,58	,2
Ramn	2,57	5,25	2,26	0,5	0,26	0,1	0,2	1,00	0,5	1,45	, 41	0,94	1,65
Lardal	1,42	0,61	1,10	0,34	0,09	0,07	0,05	0,16	0,24	0,75	0,47	28	0,63
Leken	1,10	1,35	,91	0,36	0,2	0,14	0,22	0,20	0,45	1,27	1,47	, 85	0,68
Nordmo	0,79	0,65	0,29	0,1	0,0	0,0	0,0	0,0	0,6	0,50	0,53	0,09	0,38
Fager	0,12	0,28	0,25	0,12	0,0	0,0	0,0	0,0	0,05	0,20	0,24	0,13	
Gulsvik	0,31	0,43	0,35	0,91	0,07	0,05	0,02	0,06	0,10	0,71	0,87	0,	
Os	0,30	0,25	0,15	0,11	0,06	0,04	0,10	0,0	0,1	0,2	0,15	0,0	
Valdale	0,25	38	0,32	0,33	0,	0,0	0,2	0,18	0,13	0,3	1,24	2,9	0,38
Ualand	2,8	3,71	6,13	2,42	0,46	0,4	0,65	0,30	2,1	2,4	1,45	1,2	2,51
Egersund	6,08	5,15	6,08	4,05	1,22	0,67	1,05	0,6	3,90	4,28	3,21	2,3	4,13
eda	1,84	62	2,41	2,7	0,54	0,5	0,55	0,29	3,75	1,80	0,85	0,7	
Haukelan	1,48	,07	1,46	2,66	0,6	0,5	0,4	0,3	4,86	1,20	0,65	0,65	171
Vos	1,40	1,52	0,62	2,06	0,25	0,0	0,2	0,1	1,10	0,66	0,27	0,2	0,84
Nausta	1,12	2,62	1,51	1,33	0,38	0,2	0,53	0,1	4,63	1,06	0,64	0,5	,38
	1,18	,55	1,20	,1	0,38	0,43	0,6	0,24	4,6	0,98	0,65	0,51	
Kárvatn	1,57	2,90	2,1	1,99	0,6	0,13	0,2	0,3	0,5	0,78	0,8	1,	
Selbu	0,63	1,95	1,43	1,73	0,16	0,48	0,27	0,4	0,70	0,95	0,5	1,8	0,95
Høylandet	1,36	5,72	1,75	1,74	0,42	0,59	0,62	0,75	1,34	2,97	1,39	2,65	,
Namsvatn	0,63	1,90	0,5	1,05	0,1	0,18	0,	0,19	0,4	2,03	0,67	2,	, 16
Tustervatn	2,91	1,89	1,03	1,6	0,18	0,5	0,	0,26	0,35	1,37	0,93	6,62	1,7
Øverby	1,43	1,01	0,98	0,74	0,16	0,32	0,21	0,1	0,87	0,46	0,87	2,75	,74
Jergul	0,24	0,21	0,33	0,26	0,24	0,24	0,15	0,05	0,11	0,23	0,41	1,38	0,21
Svanvik	0,67	1,34	0,90	3,66	3,35	0,18	0,16	0,11	0,21	1,07	2,15	2,48	0,73
Karpdalen	2,58	3,42	1,04	5,42	2,63	0,35	0,43	0,30	0,51	2,45	7,31	7,39	2,27
Ny -Ålesund	-	22,12	4,35	2,41	2,62	3,09	5,20		4,08	9,14	8,12	6,47	,

Tabell A.1.9: Månedlige og årlige middelkonsentrasjoner av klorid i nedbør på norske bakgrunnsstasjoner, 1995.
Enhet: mg/l.

STASJON	JAN	FEB	MAR	APA	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	R
Birkenes	4,05	3,32	3,39	0,73	0,32	0,53	0,40	0,57	0,88	1,89	2,46	2,22	2,06
Søgne	10,04	5,18	7,47	1,39	0,94	0,87	1,09	2,21	2,31	5,89	10,12	5,62	4,65
Lista	78,24	58,48	38,86	32,33	10,50	9,94	13,13	58,17	29,63	62,81	48,69	15,52	43,82
Skreådalen	3,44	5,74	4,57	5,61	0,63	0,65	0,82	1,45	3,34	2,30	1,00	0,90	3,16
Valle	1,57	2,29	2,27	1,38	0,15	0,12	0,26	1,42	0,75	1,74	0,63	0,33	, 37
Vatnedale	0,85	1,78	0,82	2,98	0,31	0,10	0,21	0,22	4,04	0,62	0,28	0,5	1,29
Treungen	2,35	1,02	1,40	1,10	0,12	0,15	0,55	0,39	0,54	1,09	0,81	0,47	0,99
Solhomfjell	3,20	0,90	1,65	0,51	0,20	0,28	0,18	0,44	0,41	1,32	1,46	0,98	1,05
Masvatn	0,42	0,68	0,78	0,51	0,09	0,06	0,06	0,33	0,15	0,46	0,18	0,33	30
Prestebakk	1,75	4,04	1,95	0,34	0,40	0,48	1,17	0,94	1,74	3,52	6,02	2,36	2,02
Ramne	4,18	8,57	4,12	0,77	0,48	0,31	0,42	2,93	0,94	2,49	2,34	1,31	2,76
Lardal	2,39	1,08	2,04	0,49	0,17	0,12	0,10	0,25	0,44	1,34	0,81	0,47	1,10
Loken	1,90	2,36	1,45	0,52	0,44	0,22	0,38	0,39	0,82	2,18	2,45	1,31	16
Nordmoe	1,25	1,13	0,51	0,15	0,21	0,16	0,09	0,22	1,23	0,80	0,84	0,11	0,66
Fagernes	0,26	0,55	0,55	0,16	0,09	0,09	0,16	0,14	0,12	0,35	0,21	0,21	0,20
Gulsvik	0,71	0,79	0,99	0,97	0,12	0,09	0,05	0,08	0,20	0,87	1,35	0,24	0,38
Osen	0,63	0,57	0,30	0,20	0,14	0,06	0,18	0,12	0,21	0,37	0,32	0,11	0,26
Valdalen	0,44	0,66	0,52	0,49	0,17	0,10	0,29	0,24	0,25	0,53	1,99	4,30	0,59
Ualand	5,25	6,57	9,64	4,03	0,74	0,77	1,06	0,52	4,34	4,48	2,50	2,22	4,43
Egersund	9,75	8,89	10,66	7,30	2,15	1,10	1,78	1,35	6,79	7,49	5,40	4,07	7,05
Vikedal	3,29	6,17	4,38	4,60	0,94	0,99	0,95	0,40	6,70	3,15	1,48	1,38	3,38
Haukeland	2,56	5,22	2,51	4,72	1,09	0,95	0,80	0,56	8,84	2,23	1,18	1,14	3,03
Voss	2,48	2,73	1,06	3,53	0,25	0,14	0,37	0,15	2,10	1,15	0,50	0,50	1,49
Nausta	1,92	4,57	2,92	2,37	0,68	0,48	0,91	0,28	8,36	1,91	1,21	0,91	2,47
Førde	2,13	6,19	2,02	5,29	0,62	0,61	1,01	0,40	8,96	1,64	1,19	0,87	2,88
Kårvatn	2,54	4,73	3,70	4,00	1,13	0,23	0,37	0,65	0,99	1,45	1,50	1,84	2,03
Selbu	1,06	3,47	2,38	3,11	0,25	0,90	0,45	0,76	1,30	1,60	0,93	3,23	1,67
Haylandet	2,30	10,07	3,36	3,08	0,75	1,00	1,03	1,29	2,49	5,23	2,42	4,80	3,63
Namsvatn	1,16	3,36	0,85	1,63	0,22	0,33	0,53	0,32	0,86	3,69	1,15	4,97	2,05
Tustervatn	5,51	3,46	1,91	2,95	0,34	0,96	0,56	0,49	0,68	2,14	1,65	12,06	3,06
Øverbygd	2,45	1,79	1,55	1,28	0,21	0,53	0,33	0,25	1,66	0,79	1,54	4,80	1,27
Jergul	0,51	0,39	0,47	0,42	0,37	0,39	0,20	0,09	0,14	0,39	0,78	2,66	0,35
Svanvik	1,41	2,44	1,51	6,55	4,42	0,27	0,27	0,19	0,39	1,95	3,91	4,41	1,30
Karpdalen	4,01	6,17	1,68	7,84	4,17	0,57	0,65	0,47	0,79	4,06	13,06	13,14	3,91
Ny-Ålesund	-	41,28	8,27	4,54	4,71	5,13	8,94	-	7,29	17,08	14,84	12,17	10,42

Tabell A.1.10: Månedlige og årlige nedbørmengder på norske bakgrunnsstasjoner, 1995.
Enhet: mm.
Til høyre: Årets nedbørmålinger $i \%$ av nedbørnormalene (1961-90), målt av Det norske meteorologiske institutt (DNMI).

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	$\dot{A} \mathrm{R}$	\%av normalen
Birkenes	215	193	143	40	100	108	36	17	320	162	39	38	1411	98*
Sagne	151	186	76	24	76	69	48	13	326	159	40	45	1213	88^{*}
Lista	147	137	138	34	64	45	69	6	101	88	40	26	896	81
Skreådaien	332	354	196	71	77	86	113	18	205	443	161	26	2083	100
Valle	186	166	73	8	32	69	29	8	176	132	31	14	926	93*
Vatnedalen	105	140	51	11	23	34	65	24	118	191	46	17	823	100*
Treungen	165	95	103	11	79	124	27	5	180	74	26	14	903	93*
Solhomfjeil	156	87	131	28	101	149	34	10	274	54	27	21	1073	95*
Masvatn	53	69	41	15	54	102	68	8	130	94	18	9	660	90*
Prestebakke	104	86	59	58	41	91	56	28	83	80	32	27	746	94*
Ramnes	240	96	99	41	46	130	37	4	210	73	18	23	1017	83^{*}
Lardal	300	70	116	39	119	148	48	3	245	60	19	12	1179	96^{*}
Laken	93	65	35	42	33	113	42	34	101	59	22	17	656	91*
Nordmoen	142	80	73	45	65	103	101	11	81	59	19	12	791	82*
Fagernes	63	37	15	11	59	113	43	9	65	30	9	10	465	75*
Gulsvik	91	50	44	6	87	130	60	12	102	39	2	10	634	85*
Osen	59	43	42	28	92	95	111	22	49	45	23	4	612	89*
Valdalen	55	31	45	24	65	73	57	39	34	41	32	19	518	89
Ualand	294	311	146	42	94	61	156	31	188	298	186	30	1838	106*
Egersund	295	228	205	53	64	83	134	28	200	244	130	48	1712	106*
Vikedal	262	367	248	135	129	88	259	71	215	525	231	106	2635	$103 *$
Haukeland	430	595	295	185	102	101	264	64	250	862	338	145	3631	108*
Voss	160	224	128	42	45	39	122	55	161	331	93	40	1439	107*
Nausta	337	362	253	92	84	60	146	92	139	596	218	131	2510	101*
Førde	205	284	140	87	67	50	113	46	117	410	169	106	1793	101*
Kárvatn	181	155	101	150	74	97	91	254	42	182	143	190	1661	90^{*}
Selbu	80	141	89	133	106	99	106	188	33	171	141	126	1411	110*
Høylandet	115	135	151	84	75	83	92	115	73	225	162	198	1509	.
Namsvatn	83	156	102	66	73	95	75	95	40	227	75	115	1201	123
Tustervatn	111	204	121	73	56	85	121	133	72	281	114	146	1515	118
Øverbygd	24	34	22	6	23	57	78	116	20	110	107	64	659	116*
Jergul	8	21	19	14	15	94	46	90	19	102	27	5	459	118
Svanvik	5	21	4	3	14	68	67	78	17	64	44	9	395	112*
Karpdalen	11	18	14	6	11	69	71	40	13	64	44	23	383	105*
Ny -Ȧlesund	0	2	20	9	15	14	14	3	21	14	14	113	238	70

* NILU og DNMI máler har ulik plassering.

Tabell A.1.11: Månedlig og årlig våtavsetning av sterk syre (H+) på norske bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{ekv} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	$\dot{A} \mathrm{R}$
Birkenes	8066	5352	8086	958	1392	3581	1416	436	7420	7486	1892	1367	47460
Sagne	5886	4735	4996	606	1370	2182	2875	356	7578	6909	2682	2995	43170
Lista	4919	2706	3760	806	2258	1617	2758	169	2191	4283	1864	2547	29859
Skreảdalen	8015	4455	3060	427	422	1034	1325	1507	2351	10433	2993	930	36975
Valle	5115	2731	2957	180	296	1043	806	864	2900	3599	1033	111	21636
Vatnedalen	2196	1282	950	127	284	422	860	1436	1176	3177	337	198	12445
Treungen	7883	2407	5706	395	1490	3096	133	343	3815	3189	1022	704	30175
Solhomfjell	6150	1958	5839	510	2525	4178	918	214	6907	2699	732	744	33289
Masvatn	1352	805	1985	449	837	1299	967	1083	2226	3058	403	354	14817
Prestebakke	3416	3068	1928	183	1655	1658	2661	455	1494	5226	2277	2165	26185
Ramnes	13131	7945	4636	801	1749	3170	1539	3	3942	3217	428	690	41323
Lardal	17417	2383	5693	814	3973	3244	2019	127	4951	2874	701	484	44678
L-ken	3665	1989	1150	573	1491	2149	1124	434	1752	2584	571	746	18228
Nordmoen	6019	2548	1813	622	3870	1543	3381	654	1820	2276	599	192	25422
Fagernes	1970	469	548	157	442	637	193	142	1760	708	61	43	7142
Gulsvik	4754	1098	2024	125	3208	2085	898	216	2585	1158	95	141	18386
Osen	2122	1010	1374	101	3563	1310	2558	1195	960	1446	419	58	15879
Valdalen	1564	591	955	678	1857	1346	485	1579	807	709	59	90	10734
Ualand	10416	8349	5041	937	1762	1583	3604	1339	3689	12646	5168	2092	56627
Egersund	11539	5516	6166	1409	1473	2807	3635	2888	3847	13554	5788	3569	62141
Vikedal	5584	5516	4944	1108	2195	1319	4688	1932	1917	14524	4831	1814	50372
Haukeland	7680	3888	5013	1336	2143	1500	4100	1436	886	12738	4647	1557	46927
Voss	3812	2312	2417	508	838	183	1912	726	835	6494	1087	832	21957
Nausta	4726	2316	4483	790	1581	814	1589	3080	369	7966	1845	1197	30756
Førde	3062	1572	2307	669	1889	810	1451	1886	684	4689	2379	697	22095
Kárvatn	1298	806	746	1286	505	873	704	2334	312	960	737	758	11312
Selbu	497	814	888	908	2541	783	960	3010	215	1174	1320	779	13888
Høylandet	655	615	1201	236	1340	663	799	1426	288	1253	325	612	9413
Namsvatn	368	826	570	220	406	825	1400	1018	105	1334	274	537	7884
Tustervatn	761	1283	866	285	382	656	984	1020	488	1351	357	622	9054
\varnothing Øerbygd	158	295	192	110	319	457	736	694	144	871	487	380	4841
Jergul	155	502	436	396	301	2395	515	1494	234	1179	151	14	7966
Svanvik	150	370	49	384	545	1681	1176	2315	729	1843	329	38	9451
Karpdalen	489	889	298	1741	488	3003	1131	1341	425	1544	536	557	11489
Ny -Ȧlesund	0	0	13	4	38	5	8	-	10	3	3	1137	1318

Tabell A.1.12: Månedlig og årlig våtavsetning av sulfat på norske bakgrunnsstasjoner, 1995.
Enhet: $m g$ S/m², korrigert for siøsalt.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	130	62	158	19	30	54	22	5	115	107	26	16	743
Søgne	84	61	87	19	35	36	51	9	143	124	44	41	735
Lista	102	37	97	24	64	33	51	4	41	82	32	32	599
Skreádalen	125	70	71	18	19	21	37	11	33	164	45	10	624
Valle	59	22	40	20	6	24	13	22	36	47	10	7	303
Vatnedalen	26	10	12	9	9	7	27	33	31	38	2	2	206
Treungen	97	24	74	13	34	46	19	7	64	50	15	10	452
Solhomfjell	91	22	113	12	56	61	21	13	121	53	16	12	590
Møsvatn	9	5	18	11	15	20	16	20	35	34	2	2	186
Prestebakke	43	35	27	31	69	36	49	12	37	93	28	26	487
Ramnes	285	102	114	27	55	53	39	3	84	52	12	13	839
Lardal	232	26	108	28	100	59	41	3	104	47	10	7	764
Loken	53	26	23	19	45	41	28	7	35	40	16	9	340
Nordmoen	74	27	29	13	94	43	56	9	30	31	7	1	415
Fagernes	18	3	7	3	32	40	7	2	27	8	2	2	151
Gulsvik	63	15	23	10	83	43	18	6	61	30	1	2	354
Osen	26	9	16	9	76	35	47	23	15	17	4	0	271
Valdalen	20	5	12	15	43	35	19	40	18	11	1	3	221
Ualand	140	104	79	15	34	22	81	19	50	173	85	21	824
Egersund	153	64	109	32	37	42	85	50	55	197	77	35	936
Vikedal	76	78	117	38	54	30	114	50	37	220	77	21	914
Haukeland	100	50	103	34	67	41	78	29	13	177	60	17	766
Voss	43	20	46	6	26	12	31	10	14	82	8	6	303
Nausta	54	22	82	11	37	14	27	58	5	106	28	7	451
Førde	39	17	38	12	41	13	20	36	6	71	23	5	321
Kårvatn	18	8	16	21	8	16	7	25	2	4	5	4	134
Selbu	11	8	13	15	47	21	14	47	3	10	6	9	206
Høylandet	11	17	33	10	43	35	19	28	4	38	8	12	259
Namsvatn	9	9	20	5	26	33	25	19	3	29	2	7	188
Tustervatn	11	15	12	6	10	27	14	13	5	16	3	4	136
Øverbygd	2	4	2	3	5	16	13	5	4	10	5	4	73
Jergul	1	3	5	6	7	42	5	21	4	15	1	0	1166
Svanvik	3	7	3	8	44	57	23	49	18	36	7	2	233
Karpdalen	10	16	7	46	22	61	21	26	17	29	10	9	241
Ny-Ålesund	-	2	12	5	7	10	5	-	3	14	5	18	71

Tabell A.1.13: Månedlig og årlig våtavsetning av nitrat på norske
bakgrunnsstasjoner, 1995.
Enhet: $m \mathrm{~g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APA	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	133	73	146	12	19	42	13	3	71	124	32	16	684
Søgne	90	64	99	11	18	24	32	3	65	145	54	45	651
Lista	112	52	95	20	50	36	39	12	42	103	53	45	658
Skreádalen	110	52	55	12	13	20	25	9	30	136	37	12	510
Valle	59	30	34	10	6	18	6	9	22	41	14	8	256
Vatnedalen	20	12	13	6	6	6	16	13	17	27	4	5	147
Treungen	108	26	65	7	15	38	8	2	45	52	19	10	394
Solhomfjell	98	26	91	7	25	44	12	4	83	60	22	14	484
Møsvatn	14	7	24	7	8	14	10	6	19	29	5	5	147
Prestebakke	43	39	34	16	27	24	23	6	29	95	38	32	406
Ramnes	174	129	85	16	28	31	18	1	49	64	18	13	624
Lardal	200	30	87	17	42	33	20	1	47	57	14	7	556
Løken	53	29	23	11	17	25	17	3	25	43	20	14	282
Nordmoen	68	27	23	10	40	24	28	5	18	35	11	2	292
Fagernes	22	6	10	2	12	20	1	2	15	7	3	2	101
Gulsvik	51	19	36	7	32	23	14	3	28	29	4	4	249
Osen	23	12	17	5	28	17	31	8	6	12	9	1	167
Valdalen	20	10	13	7	16	16	12	17	9	12	7	14	153
Ualand	126	74	67	11	19	16	48	14	35	174	77	22	682
Egersund	161	66	109	22	19	32	57	33	47	203	93	46	886
Vikedal	56	54	69	25	27	17	69	25	29	158	54	25	607
Haukeland	73	39	72	22	42	26	36	16	9	107	47	16	505
Voss	28	16	29	5	16	7	19	7	6	55	11	9	208
Nausta	36	15	45	8	24	10	16	31	5	53	26	13	283
Førde	23	14	25	7	26	9	10	20	3	35	22	9	203
Kårvatn	6	3	6	6	5	10	6	16	2	7	7	5	80
Selbu	5	3	7	6	20	9	8	22	0	14	11	7	113
Høylandet	11	8	17	5	24	13	11	16	3	21	9	13	153
Namsvatn	10	12	14	3	12	14	12	10	1	22	4	7	121
Tustervatn	9	9	10	2	5	12	9	10	5	15	4	4	96
Øverbygd	2	2	2	1	3	6	10	4	2	5	3	2	42
Jergul	1	5	4	3	3	9	5	5	2	9	2	0	49
Svanvik	3	6	2	3	6	7	4	7	4	6	2	1	45
Karpdalen	10	8	3	4	4	8	5	10	3	6	3	9	71
Ny-Ålesund	-	0	1	1	2	1	2	-	1	1	1	13	23

Tabell A.1.14: Månedlig og årlig våtavsetning av ammonium på norske bakgrunnsstasjoner, 1995.
Enhet: $\mathrm{mg} \mathrm{N} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	131	42	147	10	25	31	9	2	54	106	25	8	589
Søgne	70	37	97	9	23	25	33	1	67	126	37	26	552
Lista	83	57	101	21	42	30	31	1	28	91	38	32	555
Skreádalen	96	51	66	17	19	22	40	7	28	105	37	12	500
Valle	32	8	30	12	5	31	3	7	8	29	7	12	183
Vatnedalen	12	5	7	6	5	4	21	18	16	9	1	3	108
Treungen	70	13	50	8	21	32	33	1	51	58	16	8	361
Solhomfjell	79	12	122	7	30	39	18	13	69	56	20	10	464
Møsvatn	4	1	12	7	7	11	11	8	16	14	1	1	92
Prestebakke	28	20	20	20	46	34	20	1	28	88	23	18	346
Ramnes	228	67	92	19	37	30	23	1	41	49	17	13	616
Lardal	162	15	77	18	55	36	23	0	52	47	9	4	497
Løken	39	19	16	14	23	24	19	4	21	29	15	12	235
Nordmoen	48	12	18	7	51	41	33	1	12	25	7	1	257
Fagernes	11	4	5	2	13	77	2	2	11	2	2	3	134
Gulsvik	38	16	23	10	47	35	16	4	41	31	3	4	268
Osen	11	3	8	8	36	34	33	9	4	5	6	0	157
Valdalen	13	4	9	9	20	33	33	23	10	10	14	18	194
Ualand	86	41	68	13	15	11	59	11	13	113	59	10	499
Egersund	110	29	87	21	20	21	61	27	32	143	57	25	631
Vikedal	36	45	74	40	34	22	86	34	43	123	49	22	609
Haukeland	62	54	100	33	68	41	34	42	25	108	37	22	616
Voss	10	3	29	3	14	30	22	10	4	36	5	3	168
Nausta	19	9	44	8	29	11	23	37	18	50	55	17	321
Førde	5	8	17	6	29	8	6	21	3	27	12	7	149
Kårvatn	10	5	12	5	8	13	7	20	1	8	8	10	106
Selbu	13	5	3	10	22	44	7	24	2	16	6	13	166
Høylandet	18	23	35	17	39	31	21	27	13	47	27	35	332
Namsvatn	18	15	29	10	34	32	24	13	3	39	9	16	243
Tustervatn	8	12	9	7	8	29	19	17	10	37	11	18	186
Øverbygd	2	2	1	1	1	10	15	21	4	7	6	4	74
Jergul	0	1	1	1	3	8	6	4	2	7	0	0	32
Svanvik	2	5	2	3	10	26	3	9	4	7	6	2	74
Karpdalen	5	4	2	7	7	11	5	9	7	7	3	3	69
Ny-Ålesund	-	0	2	1	2	8	1	-	15	5	1	9	366

Tabell A.1.15: Månedlig og årlig våtavsetning av kalsium på norske
bakgrunnsstasjoner, 1995.
Enhet: mg/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ARR
Birkenes	26	19	22	8	6	5	2	1	16	17	6	4	131
Søgne	40	27	24	9	8	18	9	4	29	34	17	10	230
Lista	289	209	135	34	36	15	29	12	73	140	48	12	1031
Skreadalen	41	63	35	35	22	14	14	9	32	54	21	2	340
Valle	13	15	8	14	5	13	3	12	19	11	2	1	116
Vatnedalen	6	9	3	5	3	4	15	3	14	18	6	1	88
Treungen	14	3	8	4	5	7	17	2	15	7	2	1	85
Solhomfjell	18	6	14	6	9	39	2	2	34	12	9	4	154
Møsvatn	1	2	3	5	4	5	3	1	7	6	1	1	38
Prestebakke	9	10	10	7	17	10	5	6	23	23	8	4	136
Ramnes	43	32	18	18	16	13	13	0	43	15	11	10	232
Lardal	29	4	12	14	13	5	8	1	29	7	4	1	126
Løken	28	9	10	10	10	7	8	19	18	13	24	3	158
Nordmoen	8	4	4	8	15	13	22	5	9	6	2	1	98
Fagernes	3	2	2	3	22	11	6	2	7	2	1	2	63
Gulsvik	4	3	12	6	12	9	2	2	19	6	1	2	77
Osen	3	3	3	16	12	8	15	4	3	3	2	1	72
Valdalen	3	2	2	5	8	5	14	6	5	3	7	9	68
Ualand	42	51	42	9	8	2	8	10	21	45	17	2	259
Egersund	97	52	80	22	10	10	14	12	36	68	29	10	439
Vikedal	33	70	41	32	13	5	19	7	36	64	20	8	347
Haukeland	33	83	30	27	17	8	14	16	75	53	29	8	391
Voss	14	16	10	5	12	3	5	3	15	24	7	1	116
Nausta	22	42	21	7	6	5	7	5	28	35	16	5	200
Førde	22	54	14	16	6	3	4	5	24	28	17	7	201
Kárvatn	25	46	12	17	9	4	3	10	2	8	9	24	168
Selbu	3	13	8	23	6	7	6	11	2	15	7	19	120
Høylandet	9	35	13	20	8	41	14	12	7	32	40	28	260
Namsvatn	4	15	5	5	6	8	5	16	17	23	5	18	127
Tustervatn	17	21	9	11	11	16	8	11	7	32	13	45	201
Øverbygd	2	2	2	2	2	7	4	46	3	7	8	9	93
Jergul	1	1	1	1	3	5	5	2	2	5	3	1	299
Svanvik	1	2	1	2	17	6	3	10	4	7	6	2	50
Karpdalen	3	5	2	5	5	7	16	2	4	9	62	13	134
Ny-Ålesund	-	10	28	12	9	15	30	-	12	40	33	53	212

Tabell A.I.16: Månedlig og årlig våtavsetning av kalium på norske bakgrunnsstasjoner, 1995.
Enhet: mg/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	25	17	15	2	4	8	2	1	14	12	5	3	107
Søgne	47	34	21	4	9	13	6	7	38	60	15	11	266
Lista	264	212	118	25	18	19	25	8	61	120	42	11	924
Skreádalen	67	68	44	20	12	14	18	7	36	66	24	4	381
Valle	14	16	6	2	1	17	3	9	8	10	2	2	89
Vatnedalen	5	10	2	2	2	2	32	3	16	22	2	1	99
Treungen	14	3	4	1	4	16	9	0	4	6	1	1	62
Solhomfjell	17	5	11	1	3	13	2	4	8	5	11	7	85
Møsvatn	2	1	2	1	2	7	1	0	2	4	1	1	22
Prestebakke	9	9	7	1	9	16	3	14	10	14	9	4	111
Ramnes	86	37	25	7	18	13	6	3	15	11	6	11	236
Lardal	28	3	8	2	11	11	3	0	6	6	2	1	80
Laken	9	7	5	3	8	14	4	2	7	9	5	4	77
Nordmoen	9	3	2	1	7	35	3	0	3	4	1	0	69
Fagernes	2	1	1	1	3	62	4	1	2	2	1	1	80
Gulsvik	5	3	3	3	5	15	5	1	1	11	1	1	56
Osen	3	3	2	4	4	23	7	2	4	6	1	0	59
Valdalen	4	2	1	1	4	9	15	4	3	7	19	33	102
Ualand	36	42	35	4	3	2	5	3	16	34	14	2	195
Egersund	72	43	47	8	5	6	11	3	28	51	21	5	300
Vikedal	25	49	24	15	4	5	10	5	31	50	9	12	239
Haukeland	30	69	23	21	10	15	10	11	46	67	15	11	327
Voss	12	13	5	4	6	29	10	5	14	16	3	1	119
Nausta	18	36	16	5	2	6	9	4	24	30	9	4	162
Førde	11	42	8	12	1	5	3	3	18	29	10	6	150
Kảrvatn	24	18	10	12	7	9	3	5	1	16	12	15	132
Selbu	3	10	5	8	2	39	3	6	1	17	5	10	109
Høylandet	9	36	12	6	3	27	7	11	6	30	16	26	188
Namsvatn	3	10	3	3	1	4	3	1	1	18	2	12	62
Tustervatn	20	22	11	11	3	13	10	13	6	24	14	43	192
Øverbygd	3	2	1	1	1	12	6	16	3	6	7	7	66
Jergul	0	1	1	1	1	7	2	1	0	9	3	6	30
Svanvik	1	2	1	1	6	4	2	14	1	6	4	1	39
Karpdalen	4	7	1	5	2	3	3	2	1	9	15	10	59
Ny-Ålesund	-	2	6	2	1	14	9	-	6	7	4	28	79

Tabell A.1.17: Månedlig og årlig våtavsetning av magnesium på norske bakgrunnsstasjoner, 1995.
Enhet: $\mathrm{mg} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	57	46	33	2	3	3	1	1	18	21	6	6	199
Søgne	108	67	42	3	5	15	5	3	50	64	27	18	408
Lista	808	607	361	69	46	31	61	23	198	372	124	29	2734
Skreådalen	71	138	60	27	4	3	6	1	46	69	13	1	439
Valle	19	26	12	2	1	6	2	1	11	15	1	1	98
Vatnedalen	6	18	3	3	1	1	6	1	28	14	1	0	81
Treungen	27	7	10	1	1	3	4	0	8	7	2	0	71
Solhomfjell	33	6	16	2	2	10	1	1	9	6	3	1	89
Masvatn	1	3	2	1	1	1	1	0	2	3	0	0	16
Prestebakke	14	24	8	10	3	7	5	3	12	22	14	5	130
Ramnes	79	59	26	4	3	4	2	1	16	13	4	4	215
Lardal	54	5	15	3	2	2	2	0	14	6	2	1	106
Laken	12	10	4	2	2	3	2	2	6	9	4	1	58
Nordmoen	13	6	3	1	2	6	5	0	6	4	1	1	49
Fagernes	1	2	1	2	6	7	4	0	6	2	1	1	32
Gulsvik	3	3	2	1	2	3	1	1	8	4	0	1	28
Osen	2	2	1	2	1	4	3	0	1	2	1	0	19
Valdalen	2	1	2	1	1	1	6	1	1	2	2	3	22
Ualand	99	143	111	14	6	3	12	4	46	92	34	4	569
Egersund	213	145	155	29	10	7	17	3	88	136	52	14	869
Vikedal	61	164	75	50	9	6	19	3	90	117	25	10	629
Haukeland	75	225	54	61	10	10	16	20	151	131	29	13	795
Voss	27	43	11	11	2	2	4	1	20	28	3	2	153
Nausta	49	119	49	15	4	3	8	2	72	83	21	9	432
Farde	29	128	21	34	4	3	8	2	62	50	14	10	364
Kảrvatn	31	56	27	37	6	2	2	12	3	19	16	32	246
Selbu	6	35	16	32	2	8	5	11	3	23	10	30	180
Høylandet	19	97	33	19	4	10	11	10	12	87	35	67	404
Namsvatn	7	38	7	9	1	3	3	3	2	60	8	42	181
Tustervatn	38	49	16	15	1	6	5	5	4	56	15	112	325
\varnothing verbygd	4	4	3	1	1	3	4	8	3	8	12	22	71
Jergul	0	1	1	0	1	2	3	1	1	2	1	1	12
Svanvik	1	4	1	2	8	3	3	7	1	9	13	3	50
Karpdalen	4	8	2	5	4	4	6	2	1	19	42	22	118
Ny-Ålesund	-	7	15	5	7	B	13	-	11	17	21	90	188

Tabell A.1.18: Månedlig og årlig våtavsetning av natrium på norske bakgrunnsstasjoner, 1995.
Enhet: $\mathrm{mg} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	$\dot{A} \mathrm{R}$
Birkenes	512	385	271	17	20	35	7	5	167	179	57	48	1707
Sagne	896	556	337	24	42	37	31	19	417	512	226	151	3249
Lista	6956	5055	2938	619	385	267	542	215	1741	2984	1039	239	23001
Skreádalen	631	1146	487	228	32	36	60	15	395	580	90	13	3718
Valle	165	216	100	10	4	5	8	5	67	124	9	2	714
Vatnedalen	49	140	24	28	13	3	19	3	313	69	14	12	686
Treungen	219	53	80	7	6	9	10	1	52	56	12	3	508
Solhomfjell	280	45	133	11	11	27	4	4	59	41	25	15	654
Masvatn	9	25	17	5	3	5	3	0	9	23	2	1	104
Prestebakke	109	200	70	16	12	27	38	18	81	171	117	42	902
Ramnes	616	505	223	21	12	25	8	4	111	106	26	21	1679
Lardal	425	42	127	13	11	11	2	1	59	45	9	3	748
Loken	102	89	32	15	9	16	9	7	46	74	32	14	445
Nordmoen	112	52	22	5	6	10	4	1	50	30	10	1	303
Fagernes	8	10	4	1	3	5	2	1	3	6	2	1	46
Gulsvik	29	21	16	5	6	7	1	1	10	28	2	1	126
Osen	18	11	7	3	5	3	11	1	6	10	3	0	81
Valdalen	14	12	15	8	8	4	13	7	5	14	40	57	197
Ualand	834	1153	896	103	43	27	101	9	413	729	269	37	4614
Egersund	1793	1176	1245	215	78	56	140	17	780	1044	416	112	7078
Vikedal	484	1328	597	371	70	51	142	20	805	943	196	83	5089
Haukeland	639	1829	432	491	64	56	118	24	1212	1038	219	94	6222
Voss	225	340	80	86	11	3	29	5	178	218	25	11	1212
Nausta	378	947	382	123	32	17	77	13	644	631	140	67	3454
Farde	242	1010	168	275	25	21	73	11	549	403	109	54	2942
Kärvatn	284	449	217	300	49	13	21	93	23	143	121	195	1924
Selbu	51	275	127	230	17	47	29	82	23	162	76	227	1347
Høylandet	155	771	264	147	31	50	57	86	98	669	225	526	3079
Namsvatn	52	297	52	69	8	17	24	18	18	460	51	329	1394
Tustervatn	323	384	124	121	10	45	38	35	25	386	106	968	2584
Øverbygd	34	34	22	4	4	18	16	20	17	50	93	176	486
Jergul	2	4	6	4	3	23	7	4	2	23	11	7	95
Svanvik	4	29	4	11	48	12	11	8	3	68	95	23	289
Karpdalen	27	60	15	35	29	24	31	12	6	156	323	171	870
Ny-Alesund	-	43	85	21	38	43	71	-	86	125	113	730	1337

Tabell A.1.19: Månedlig og årlig våtavsetning av klorid på norske
bakgrunnsstasjoner, 1995.
Enhet: mg/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ȦR
Birkenes	872	640	486	29	32	57	15	10	281	307	95	83	2913
Sagne	1520	962	566	34	72	60	52	29	752	938	401	253	5643
Lista	11512	8033	5352	1088	672	452	908	330	3005	5517	1951	408	39256
Skreádalen	1142	2032	895	400	49	56	93	27	685	1020	160	23	6587
Valle	292	381	167	11	5	8	7	12	133	229	20	5	1271
Vatnedalen	89	249	42	32	7	3	14	5	476	119	13	9	1058
Treungen	387	98	144	12	10	18	15	2	98	81	21	7	892
Solhomfjell	498	79	217	14	20	42'	6	5	112	72	39	21	1123
Mosvatn	23	47	32	7	5	6	4	3	20	43	3	3	195
Prestebakke	182	348	115	20	16	44	66	26	145	283	195	63	1504
Ramnes	1003	824	407	31	22	41	16	12	198	183	43	30	2810
Lardal	717	75	236	19	20	18	5	1	107	80	15	6	1300
Loken	177	154	51	22	15	25	16	13	82	128	53	22	757
Nordmoen	178	90	38	7	14	16	9	2	100	47	16	1	520
Fagernes	16	20	8	2	5	10	7	1	8	11	2	2	93
Gulsvik	65	40	43	5	11	11	3	1	20	34	3	2	239
Osen	37	25	13	6	13	6	19	3	11	17	7	0	159
Valdalen	25	21	24	12	11	7	17	10	9	22	65	84	305
Ualand	1543	2042	1409	171	70	46	165	16	817	1335	466	67	8148
Egersund	2876	2029	2182	387	138	92	239	37	1359	1826	702	197	12072
Vikedal	863	2266	1087	622	122	87	247	29	1439	1653	342	145	8904
Haukeland	1101	3108	742	872	111	96	212	36	2206	1924	398	164	10984
Voss	397	611	136	148	11	6	46	8	338	381	47	20	2150
Nausta	646	1654	738	219	57	28	133	26	1163	1140	264	119	6189
Fgrde	437	1758	282	459	42	31	115	19	1047	673	201	92	5156
Kärvatn	460	732	374	602	84	23	33	166	42	264	215	349	3373
Selbu	85	488	212	413	26	88	48	143	43	274	131	406	2358
Hzylandet	264	1356	507	260	56	84	94	148	182	1179	392	950	5473
Namsvatn	96	523	86	108	16	32	39	31	35	837	87	572	2462
Tustervatn	612	704	231	214	19	82	68	65	49	602	189	1762	4630
Øverbygd	58	60	34	7	5	30	26	29	33	87	164	308	840
Jergul	4	8	9	6	5	36	9	8	3	40	21	13	159
Svanvik	7	52	7	20	63	18	18	15	6	124	173	41	511
Karpdalen	42	108	24	50	47	39	46	19	10	259	578	303	1498
Ny -Ȧlesund	-	80	161	39	68	71	122	-	154	234	207	1372	2476

Tabell A.1.20: De 10 største døgnlige våtavsetninger av sulfat på de norske bakgrunnsstasjoner, 1995.

Stasjon	Dato	$\begin{gathered} \mathrm{SO}_{4} \text {-nedfall } \\ \mathrm{mg} \mathrm{~S} / \mathrm{m}^{2} \\ \hline \end{gathered}$	Nedbørmengde mm	\% av årsnedfall SO_{4}	pH
Birkenes	150395	38	16,4	5,1	4,11
	041095	32	41,0	4,3	4,33
	080395	28	22,9	3,8	4,22
	200195	27	39,8	3,6	4,46
	190195	24	20,9	3,2	4,17
	180195	22	46,2	3,0	4,57
	090395	22	16,7	3,0	4,08
	160395	21	16,9	2,8	4,22
	170195	17	20,1	2,3	4,29
	140995	17	53,7	2,3	4,73
				33,4	
Lista	250595	35	10,8	5,8	3,90
	170195	26	23,9	4,3	4,26
	081295	22	11,8	3,7	3,93
	150395	20	10,2	3,3	4,28
	221095	18	22,0	3,0	4,28
	050395	15	29,3	2,5	4,50
	210795	14	15,9	2,3	4,20
	151095	12	1,7	2,0	3,52
	221195	11	10,8	1,8	4,10
	140395	10	4,2	1,7	5,49
				30,6	
Skreádalen	160195	38	35,9	6,1	4,27
	031095	19	30,5	3,0	4,30
	160395	17	25,3	2,7	4,46
	200195	16	40,0	2,6	4,62
	041095	15	26,9	2,4	4,49
	171095	15	45,8	2,4	4,73
	170395	15	26,8	2,4	4,62
	251195	15	21,9	2,4	4,43
	021095	14	19,6	2,2	4,29
	261095	13	21,1	2,1	4,31
				28,4	
Løken	280595	21	9,2	6,2	4,22
	150795	16	13,4	4,7	4,28
	180195	13	16,9	3,8	4,24
	220195	11	10,2	3,2	4,14
	010695	11	16,2	3,2	4,61
	250495	11	7,3	3,2	4,60
	290595	9	6,2	2,6	4,14
	150395	9	7,1	2,6	4,22
	030995	9	22,9	2,6	5,15
	300595	8	6,7	2,4	4,28
				34,7	
Osen	140795	19	16,9	7,0	4,34
	290595	15	11,0	5,5	4,14
	130895	14	5,6	5,2	3,97
	310595	13	14,7	4,8	4,48
	150795	12	44,6	4,4	4,70
	300795	11	23,1	4,1	4,61
	080695	9	29,9	3,3	4,81
	280595	9	9,0	3,3	4,27
	300595	8	8,4	3,0	4,41
	250495	7	7,6	2,6	6,44
				43,2	

Tabell A.1.20, forts.

Stasjon	Dato	$\begin{gathered} \mathrm{SO}_{4} \text {-nedfall } \\ \mathrm{mg} \mathrm{~S} / \mathrm{m}^{2} \\ \hline \end{gathered}$	Nedbarmengde mm	\% av årsnedfall SO_{4}	pH
Haukeland	140395	31	32,2	4,0	4,47
	110395	27	8,9	3,5	3,78
	160195	27	78,7	3,5	4,61
	020595	26	11,8	3,4	3,98
	151095	23	10,2	3,0	3,92
	251095	18	38,0	2,3	4,57
	031095	17	54,1	2,2	4,59
	220895	17	12,7	2,2	4,06
	171095	16	80,3	2,1	4,82
	261095	15	148,1	2,0	5,03
				28,3	
Kårvatn	200395	7	19,8	5,2	4,88
	260195	6	15,2	4,5	4,57
	020895	6	4,8	4,5	4,28
	080495	6	17,8	4,5	4,79
	220895	5	4,5	3,7	4,30
	130895	5	10,5	3,7	4,54
	180695	5	31,3	3,7	5,12
	250195	4	40,8	3,0	5,16
	080695	3	18,5	2,2	5,17
	080295	3	23,2	2,2	5,10
				37,3	
Tustervatn	030695	8	21,5	5,9	4,95
	260795	7	6,7	5,1	4,25
	140295	4	7,1	2,9	4,37
	151095	3	7,0	2,2	4,60
	251095	3	18,5	2,2	5,05
	140395	3	6,5	2,2	4,74
	020695	3	1,8	2,2	5,07
	310595	3	8,9	2,2	4,88
	120395	3	5,5	2,2	4,61
	091295	2	7,6	1,5	4,56
				28,7	
Jergul	290695	9	15,6	7,8	4,40
	250895	5	5,7	4,3	4,24
	180595	5	6,7	4,3	4,57
	030895	4	11,0	3,4	4,73
	020695	4	8,0	3,4	4,51
	270895	4	15,3	3,4	4,74
	200695	4	11,1	3,4	4,64
	260895	4	13,7	3,4	4,73
	010695	4	4,8	3,4	4,56
	061095	3	18,8	2,6	4,82
				39,7	

Tabell A.1.21: Veide årsmiddelkonsentrasjoner og våtavsetninger av komponenter i nedbøren på norske bakgrunnsstasjoner i årene 1973-1995, og beregnede tørravsetninger av svovel-og nitrogenkomponenter i årene 1987-1995 (tabell 3.6).

- en máned mangler

Stasjon	Ar	Árlige middelkonsentrasjoner						Ärsnedbor		Ȧlig vâta	avsetnin		Tørrav	setning
		$\begin{array}{\|c\|} \hline \text { SO4-S } \\ \mathrm{mg} / 1 \\ \hline \end{array}$	$\begin{gathered} \mathrm{NO} 3-\mathrm{N} \\ \mathrm{mg} / \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NH} 4-\mathrm{N} \\ \mathrm{mg} \Lambda \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} / \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} / \\ \hline \end{gathered}$	pH	mm	SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{gathered} \mathrm{H}+ \\ \text { mekv } / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	N $\mathrm{mg} / \mathrm{m}^{2}$
Birkenes	1973	1,06				0,11	4,27	1072	1136			58		
	1974	1,11	0,50	0,52	0,23	0,19	4,25	1563	1735	782	813	88		
	1975	1,01	0,49	0,45	0,19	0,17	4,27	1341	1354	657	603	72		
	1976	1,18	0,63	0,50	0,17	0,12	4,21	1434	1692	903	717	88		
	1977	1.04	0,54	0,54	0,17	0,17	4,27	1597	1661	862	862	86		
	1978	1,17	0,62	0,57	0,17	0,12	4,11	1242	1453	770	708	96		
	1979	1,25	0,57	0,65	0,22	0,15	4,09	1560	1950	889	1014	127		
	1980	1,23	0,57	0,63	0,22	0,11	4,16	1160	1427	661	731	80		
	1981	1,04	0,52	0,53	0,20	0,13	4,21	1316	1369	684	697	81		
	1982	1,05	0,56	0,72	0,22	0,21	4,27	1592	1663	887	1140	86		
	1983	0,91	0,49	0,50	0,24	0,17	4,33	1313	1195	646	650	62		
	1984	1,09	0,57	0,63	0,21	0,19	4,24	1603	1755	905	1003	93		
	1985	0,98	0,58	0,57	0,16	0,09	4,24	1409	1375	810	805	80		
	1986	1,01	0,60	0,69	0,19	0,15	4,26	1613	1622	966	1108	88		
	1987	0,74	0,43	0,46	0,13	0,13	4,38	1576	1168	671	719	65	159	248
	1988	0,83	0,58	0,61	0,15	0,13	4,25	1986	1649	1159	1211	113	159	257
	1989	0,90	0,76	0,63	0,19	0,19	4,27	1228	1106	934	776	67	136	238
	1990	0,71	0,47	0,46	0,14	0,21	4,37	1861	1325	869	852	79	167	254
	1991	0,75	0,57	0,50	0,14	0,19	4,33	1247	930	710	618	59	170	232
	1992	0,74	0,52	0,44	0,12	0,13	4,37	1344	991	703	589	57	138	188
	1993	0,77	0,55	0,51	0,15	0,23	4,37	1245	960	683	634	54	96	158
	1994	0,63	0,55	0.51	0,15	0,12	4,48	1397	886	768	707	46	128	212
	1995	0,53	0,48	0,42	0,09	0,14	4,47	1411	743	684	589	47	115	213
Tveitdalen	1989	0,92	0,78	0,58	0,18	0,21	4,24	1305	1202	1023	754	74		
	1990	0,74	0.48	0,41	0,13	0,22	4,29	1922	1423	923	797	98		
	1991	0,84	0,61	0,54	0,13	0,18	4,31	1261	1056	774	680	61		
	1992	0,78	0,54	0,49	0,14	0,14	4,36	1387	1082	754	679	60		
	1993	0,84	0,57	0,55	0,15	0,25	4,36	1202	1011	689	657	52		
	$\begin{aligned} & 1994 \\ & 1995 \end{aligned}$	0,69	0,59	0,53	0,13	0,11	4,44	1455	1006	855	770	53		
Søgne	1989	1,12	0,93	0,91	0,31	0,43	4,34	1151	1289	1067	1050	53	212	
	1990	0,79	0,60	0,48	0,25	0,52	4,33	1807	1425	1084	872	85	237	612
	1991	0,94	0,66	0,58	0,23	0,47	4,30	1133	1063	750	662	57	245	559
	1992	0,79	0,59	0,49	0,19	0,34	4,33	1280	1011	752	623	60	192	365
	1993	0,95	0,71	0,63	0,26	0,26	4,33	1112	1061	786	699	52	148	326
	1994	0,76	0,62	0,54	0,19	0,31	4,39	1441	1092	894	781	58	173	349
	1995	0,61	0,54	0,45	0,19	0,34	4,45	1213	735	651	552	43	151	350
Lista	1973	1,01				1,31	4,33	851	860			40		
	1974	1,06				1,00	4,28	1208	1280			63		
	1975	1,10				1,06	4,30	1109	1220			56		
	1976	1,37				1,21	4,23	922	1263			54		
	1977	0,95				1,09	4,34	1114	1058			51		
	1978	1,01	0,50	0,45	0,51	1.07	4,27	931	940	466	419	50		
	1979	1,27	0,63	0,57	0,53	1,04	4,09	1157	1469	729	659	94		
	1980	1,05	0,59	0,54	0,47	1,00	4,22	953	1001	562	515	57		
	1981	0,90	0,47	0,50	0,60	1,36	4,34	1037	933	487	519	47		
	1982	1,09	0,65	0,60	0,85	1,82	4,29	1070	1161	699	645	55		
	1983	0,88	0,49	0,40	0,77	1,69	4,36	1198	1051	584	480	53		
	1984	0,92	0,61	0,47	0,86	2,12	4,28	1002	923	613	474	53		
	1985	1,11	0,80	0,68	0,76	1,74	4,20	996	1110	793	681	63		
	1986	0,95	0,63	0,57	1,06	2,66	4,30	1293	1230	816	739	65		
	1987	0,86	0,55	0,55	0,65	1,48	4,35	1169	1004	647	638	52		
	1988	0,75	0,67	0,57	0,82	2,02	4,28	1585	1189	1054	895	84		
	1989	0,83	0,86	0,52	1,21	3,23	4,30	1053	877	904	552	53		
	1990	0,74	0,55	0,42	1,07	3,01	4,38	1565	1156	856	653	65		
	1991	0,75	0,83	0,60	1,36	3,76	4,32	1031	771	858	615	49		
	1992	0,72	0,60	0,41	1,02	2,54	4,38	1376	985	826	561	57		
	1993	0,81	0,80	0,68	2,10	1.79	4,39	845	686	673	579	34		
	1994	0,56	0,57	0,52	0,91	2,37	4,56	1180	659	678	615	33		
	1995	0,67	0,73	0,62	1,15	3,05	4,48	896	599	658	555	30		
Skreádalen	1973	0,50				0,19	4,60	2185	1093			55		
	1974	0,55				0,18	4,47	2460	1350			83		
	1975	0,57	0,18	0,17		0,19	4,55	2436	1389	438	414	69		
	1976	0,60	0,24	0,23		0,17	4,55	1687	1012	405	388	48		
	1977	0,57	0,27	0,28	0,15	0,13	4,55	2057	1174	550	569	57		
	1978	0,49	0,20	0,26	0,20	0,29	4,52	1769	867	354	460	53		
	1979	0,61	0,26	0,28	0,16	0,14	4,33	2311	1410	601	647	108		

Tabell A.1.21 forts.

Stasjon	Ar	Árlige middelkonsentrasjoner						$\begin{array}{\|c\|} \hline \text { Ärsnedbar } \\ \hline \mathrm{mm} \\ \hline \end{array}$	Árlig vâtavsetning				Tørravsetning	
		$\begin{array}{\|c\|c\|} \hline \mathrm{SO4}-\mathrm{S} \\ \mathrm{mg} \\ \hline \end{array}$	$\begin{gathered} \text { NO3-N } \\ \mathrm{mg} / \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NH} 4-\mathrm{N} \\ \mathrm{mg} \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} / \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} \cap \end{gathered}$	pH		SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	$\mathrm{NH}_{4}-\mathrm{N}$ $\mathrm{mg} / \mathrm{m}^{2}$	$\underset{m_{m}}{\mathrm{H}+}$	$\begin{gathered} \mathrm{s} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$
Skreádalen forts.	1980	0,48	0,21	0,21	0,15	0,17	4,54	1949	936	409	409	56		
	1984	0,49	0,20	0,28	0,16	0,18	4,58	2260	1107	452	633	59		
	1982	0,57	0,28	0,37	0,17	0,22	4.52	2519	1436	709	933	76		
	1983	0,43	0,19	0,26	0,18	0,23	4,70	2843	1221	551	734	57		
	1984	0,46	0,24	0,23	0,16	0,21	4,59	1762	802	415	401	46		
	1985	0,59	0,32	0,33	0,15	0,12	4,48	1895	1117	610	616	63		
	1986	0,53	0,29	0,30	0.15	0,19	4,51	2439	1289	698	734	75		
	1987	0,47	0,28	0,29	0,14	0,16	4,54	1639	767	451	471	48	152	
	1988	0,41	0,28	0,28	0,12	0,14	4,55	2255	926	622	632	64	153	
	1989	0,43	0,28	0,28	0,15	0,20	4,56	2519	1087	704	696	70	143	355
	1990	0,39	0,23	0,22	0,13	0,26	4,61	3346	1293	775	732	82	170	415
	1991	0,41	0,27	0,25	0,15	0,24	4,61	2172	894	583	547	53	125	279
	1992	0,37	0,24	0,23	0,12	0,16	4,70	2728	1017	647	627	55	118	254
	1993	0,29	0,22	0,25	0,30	0,56	4,81	2006	586	437	493	31	82	256
	1994	0,38	0,28	0,31	0,31	0,25	4,77	2214	842	619	695	37	104	330
	1995	0,30	0,24	0,24	0,16	0,21	4.75	2083	624	510	500	37	96	257
Valle	1990	0,40	0,27	0,20	0,07	0,11	4,51	1504	607	409	306	46	117	274
	1991	0,47	0,32	0,25	0,14	0,10	4,52	912	432	287	227	28	100	242
	1992	0,46	0,28	0,22	0,13	0,10	4,59	1120	519	318	242	29	89	241
	1993	0,42	0,26	0,23	0,19	0,27	4,66	1052	445	276	243	23	67	266
	1994	0,49	0,37	0,30	0,17	0,11	4,58	1230	608	461	373	32	81	224
	1995	0,33	0,28	0,20	0,13	0,11	4,63	926	303	256	183	22	.	.
Vatnedalen	1974	0,54				0,06	4,59	884	477			23		
	1975	0,53	0,17	0,22		0,09	4,85	994	527	169	219	14		
	1976	0,50	0,20	0,36	0,12	0,10	4,85	715	358	143	257	10		
	1977	0,44	0,21	0,25	0,13	0,06	4,71	761	335	160	190	15		
	1978	0,41	0.17	0,23	0,14	0,10	4,62	862	353	147	198	21		
	1979	0,56	0,22	0,20	0,20	0,06	4,38	948	531	209	190	40		
	1980	0,45	0,16	0,10	0,14	0,06	4,55	799	360	128	80	23		
	1981	0,49	0,19	0,18	0,14	0,09	4.49	900	441	171	162	29		
	1982	0,38	0,18	0,17	0,13	0,08	4,62	967	366	174	159	23		
	1983	0,29	0,13	0,10	0,14	0,08	4,76	1249	363	166	130	22		
	1984	0,40	0,18	0,13	0,16	0,08	4,59	762	306	138	102	20		
	1985	0,43	0,22	0,18	0,15	0,04	4,57	794	343	173	145	21		
	1986	0,51	0,21	0,19	0,13	0,07	4,54	987	506	212	183	29		
	1987	0.41	0,17	0,15	0,12	0,04	4,60	732	298	122	107	19		
	1988	0,37	0,23	0,20	0,13	0,08	4,55	898	334	207	182	25		
	1989	0,34	0,22	0,29	0,13	0.08	4,78	980	337	218	285	16		
	1990	0,27	0,14	0,12	0,14	0,11	4,71	1465	394	203	169	28		
	1991	0,32	0.20	0,17	0,29	0,12	4,69	865	280	172	147	18		
	1992	0,29	0,17	0,11	0,15	0,10	4,75	1055	301	175	112	19		
	1993	0,23	0,18	0,10	0,23	0,44	4,82	891	203	159	92	13		
	1994	0,28	0,22	0,15	0,08	0,08	4,75	1006	286	217	155	18		
	1995	0,25	0,18	0,13	0.11	0.10	4.82	823	206	147	108	12		
Treungen	1974	0,94	0,38	0,33	0,14	0,07	4,27	1039	977	395	343	56		
	1975	0,91	0,37	0,34	0,15	0,06	4,26	894	814	331	304	49		
	1976	1,05	0,50	0,42	0,11	0,06	4,20	706	741	353	297	45		
	1977	0,81	0,44	0,39	0,11	0,05	4,32	1165	944	513	454	56		
	1978 1979	0,87	0,38	0,41	0,14	0,04	4,21	945	822	359	387	58		
	1980	0,88	0,37	0,39	0,14	0,04	4,23	759	668	281	296	45		
	1981	0,86	0,39	0,46	0,12	0,05	4,29	949	816	370	437	49		
	1982	0,84	0,45	0,50	0,14	0,07	4,32	1130	948	504	563	54		
	1983	0,83	0,40	0,43	0,18	0,05	4,35	1091	908	431	471	48		
	1984	0,77	0,36	0,27	0,15	0,05	4,27	1196	919	436	325	64		
	1985	0,68	0,39	0,37	0,13	0,04	4,33	892	608	350	333	41		
	1986	1,07	0,57	0,63	0,14	0,07	4,19	1030	1097	582	650	66		
	1987	0,68	0,37	0,37	0,13	0,07	4,39	1133	768	424	418	46		
	1988	0,75	0,50	0,45	0,10	0,05	4,27	1348	1006	670	612	73		
	1989	0,76	0,61	0,44	0,10	0,06	4,26	754	572	456	329	41		
	1990	0,63	0,42	0,37	0,06	0,07	4,37	1184	747	503	433	51		
	1991	0,59	0.42	0,34	0,13	0,06	4,42	811	480	343	278	31		
	1992	0,60	0,40	0,34	0,08	0,05	4,44	923	556	365	310	33		
	1993	0,59	0,41	0,32	0,11	0,09	4,46	803	472	329	258	28		
	1994	0,54	0,44	0,35	0,08	0,05	4,49	1016	544	448	356	33		
	1995	0,50	0,44	0,40	0.09	0,08	4,48	903	452	394	361	30		
Solhomijell	1991	0,63	0,44	0,40	0,14	0,08	4,44	878	552	389	355	32		
	1992	0,69	0,47	0,39	0,12	0,07	4,44	958	662	447	376	35		
	1993	0,66	0,45	0,38	0,15	0,08	4,47	920	611	412	347	31		
	1994	0,60	0,48	0,38	0,12	0,06	4,50	1150	686	550	442	36		
	1995	0.55	0.45	0.43	0.14	0,08	4,51	1073	590	484	464	33		

Tabell A.1.2I forts.

Stasjon	Ar	Arlige middelkonsentrasjoner						$\begin{array}{\|c\|} \hline \text { Arsnedber } \\ \hline \mathrm{mm} \\ \hline \end{array}$	Årlig vátavsetning				Tarravsetning	
		$\begin{gathered} \mathrm{SO} 4-\mathrm{S} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	NO3-N mgl	NH4-N mg/	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} \ell \end{gathered}$	Mg mg/	pH		SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{aligned} & \mathrm{NO}-\mathrm{N} \\ & \mathrm{mg} / \mathrm{m}^{2} \end{aligned}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{gathered} \mathrm{H}+ \\ \text { mekv/m² } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	N $\mathrm{ma} / \mathrm{m}^{2}$
Masvatn	1993	0,28	0,22	0,14	0,07	0,07	4,69	699	194	155	99	14		
	1994	0,32	0,27	0,17	0,07	0,02	4,66	788	250	209	136	17		
	1995	0,28	0,22	0,14	0,06	0,02	4,65	660	186	147	92	15		
Lardal	1990	0,70	0,45	0,35	0,09	0,07	4,33	1340	938	599	469	62	99	199
	1991	0,72	0,47	0,36	0,12	0,08	4,38	847	609	401	306	35	144	231
	1992	0,68	0,47	0,38	0,13	0,07	4,42	892	610	421	338	34	91	154
	1993	0,65	0,42	0,32	0,09	0,05	4,45	967	625	402	313	35	66	134
	1994	0,52	0,45	0,35	0,08	0,05	4,53	1216	631	542	429	36	78	159
	1995	0,65	0,47	0,42	0,11	0,09	4,42	1179	764	556	497	45	.	.
Prestebakke	1986	1,08	0,54	0,47	0,23	0,19	4,20	699	753	380	328	44		
	1987	0,78	0,42	0,37	0,16	0,08	4,37	830	650	349	307	35	212	343
	1988	0,77	0,47	0,37	0,16	0,15	4,25	989	758	466	370	55	219	307
	1989	0,97	0,69	0,47	0,18	0,21	4,22	697	678	478	330	42	191	301
	1990	0,87	0,57	0,42	0,18	0,18	4,28	816	710	465	342	42	157	252
	1991	0,79	0,55	0,43	0,20	0,25	4,37	805	638	445	346	35	98	190
	1992	0,83	0,60	0,47	0,16	0,15	4,35	832	687	497	392	37	140	154
	1993	0,74	0,47	0;36	0,17	0,13	4,41	775	573	364	278	30	119	228
	1994	0,53	0,39	0,24	0,17	0,13	4,48	892	477	352	216	29	138	234
	1995	0,65	0,54	0,46	0,18	0,17	4,45	746	487	406	346	26	126	.
Løken	1973	1,03				0,06	4,48	569	586			19		
	1974	0,94				0,08	4,43	831	781			31		
	1975	1,03	0,41	0,42		0,08	4,32	657	677	269	276	31		
	1976	1,20	0,49	0,50	0,40	0,09	4,39	533	640	261	267	22		
	1977	0,96	0,41	0,43	0,22	0,07	4,41	699	671	287	301	27		
	1978	1,10	0,48	0,52	0,24	0,07	4,25	597	657	287	310	34		
	1979	1,03	0,49	0.57	0,30	0,07	4,22	784	808	384	447	47		
	1980	0,97	0,39	0,49	0,25	0,08	4,33	695	674	271	341	33		
	1981	0,77	0,36	0,51	0,20	0,06	4,48	700	539	252	357	23		
	1982	1,06	0,60	0,79	0,24	0,11	4,33	885	908	515	679	40		
	1983	0,91	0,47	0,62	0,28	0,10	4,42	656	595	311	404	25		
	1984	0,91	0,49	0,76	0,30	0,10	4,45	747	678	365	567	27		
	1985	0,86	0,47	0,51	0,30	0,09	4,36	894	768	421	459	39		
	1986	0,96	0,57	0,56	0,26	0,08	4,31	701	671	399	391	34		
	1987	0,79	0,40	0,45	0,17	0,06	4,40	861	679	348	387	35		
	1988	0,76	0,49	0,49	0,20	0,08	4,31	882	669	435	429	43		
	1989	0,92	0,69	0,57	0,18	0,10	4,26							
	1990	0,74	0,47	0,44	0,12	0,08	4,36	719	530	337	313	31		
	1991	0,65	0,50	0,44	0,18	0,09	4,41	722	467	359	320	28		
	1992	0,61	0,44	0,38	0,11	0,05	4,46	686	418	302	261	24		
	1993	0,66	0,44	0,38	0,18	0,05	4,46	714	468	316	270	25		
	1994	0,43	0,37	0,29	0,30	0,06	4,64	740	316	277	213	17		
	1995	0,52	0,43	0,36	0,24	0,09	4,56	656	340	282	235	18		
Nordmoen	1987	0,72	0,37	0,33	0,14	0,03	4,34	1016	727	375	335	46	148	348
	1988	0,88	0,48	0,46	0,13	0,04	4,25	1085	960	519	500	61	171	357
	1989	0,88	0,57	0,40	0,14	0,05	4,26	816	719	463	328	44	144	356
	1990	0,77	0,44	0,35	0,10	0,05	4,31	822	636	366	286	40	137	332
	1991	0,59	0,40	0,31	0,09	0,04	4,43	781	459	312	240	29	117	284
	1992	0.58	0,40	0,27	0,10	0,03	4,42	821	473	327	218	31	99	276
	1993	0,56	0,37	0,25	0,08	0,03	4,45	927	517	340	236	33	84	246
	1994	0,45	0,39	0,29	0,07	0,03	4,55	828	373	326	242	23	97	280
	1995	0,53	0,37	0,33	0,12	0,06	4,49	791	415	292	257	25	88	279
Fagernes	1990	0,41	0,22	0,16	0,10	0,02	4,53	550	228	119	86	16		
	1991	0,38	0,21	0,24	0,22	0,04	4,75	395	150	84	94	7		
	1992	0,43	0,24	0,19	0,10	0,01	4,63	656	279	160	126	15		
	1993	0,26	0,15	0,12	0,08	0,02	4,77	619	162	95	74	10		
	1994	0,28	0,25	0,15	0,08	0,02	4,70	586	166	146	88	12		
	1995	0,32	0,22	0,29	0,14	0,07	4,81	465	151	101	134	7		
Gulsvik	1974	0,81	0,38	0,28	0,13	0,04	4,28	783	634	298	219	41		
	1975	0,89	0,40	0,34	0,21	0,05	4,36	560	498	224	190	24		
	1976	0,85	0,38	0,30	0,10	0,03	4,35	641	545	244	192	29		
	1977	0,77	0,39	0,35	0,13	0,03	4,35	683	526	266	239	31		
	1978	0,94	0,40	0,38	0,16	0,03	4,22	693	651	277	263	42		
	1979	1,27	0,53	0,62	0,23	0,04	4,11	790	1003	419	490	61		
	1980	0,78	0,25	0,27	0,13	0,03	4,33	667	520	167	180	31		
	1981	0,86	0,35	0,40	0,13	0,03	4,30	628	540	220	251	31		
	1982	0,89	0,44	0,52	0,22	0,05	4,38	778	696	346	408	33		
	1983	0,94	0,40	0,58	0,25	0,05	4,39	664	623	263	384	27		
	1984	0,87	0,40	0,58	0,25	0,04	4,41	946	819	382	547	37		
	1985	0,73	0,35	0,72	0,16	0,04	4,55	686	499	240	492	20		
	1986	0,89	0,48	0,51	0,15	0,04	4,30	804	711	382	409	40		
	1987	0,74	0,37	0,46	0,14	0,03	4,42	916	679	337	421	35		
	1988	0,67	0,41	0,38	0,09	0,03	4,33	1023	688	420	386	48	136	

Tabell A.I. 21 forts.

Stasjon	Ar	Árlige middelkonsentrasjoner						$\begin{array}{\|c\|} \hline \text { Arsnedber } \\ \hline \mathrm{mm} \\ \hline \end{array}$	Årlig vátavsetning				Torravsetning	
		$\begin{array}{\|c} \hline \mathrm{SO} 4-\mathrm{S} \\ \mathrm{mg} / \\ \hline \end{array}$	$\begin{gathered} \mathrm{NO} 3-\mathrm{N} \\ \mathrm{mg} / \mathrm{n} \end{gathered}$	$\begin{gathered} \mathrm{NH} 4-\mathrm{N} \\ \mathrm{mg} / \mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} / \end{gathered}$	pH		SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{gathered} \mathrm{H}+ \\ \text { mekv/m² } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} N \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$
Gulsvlk forts.	1989	0,76	0,54	0,55	0,15	0,06	4,42	668	507	360	369	25	88	
	1990	0,75	0,45	0,53	0,09	0,03	4,43	753	562	338	398	28	100	
	1991	0,60	0,42	0,46	0,13	0,04	4,58	506	302	212	235	13	97	
	1992	0,56	0,35	0,38	0,13	0,03	4,60	666	371	235	255	17	83	
	1993	0,50	0,33	0,40	0,12	0,03	4,66	680	343	222	269	15	60	
	1994	0,50	0,43	0,39	0,23	0,03	4,61	643	320	277	249	16	72	
	1995	0,56	0,39	0,42	0,12	0,04	4,54	634	354	249	268	18	64	
Osen	1988	0,53	0,31	0,26	0,13	0,02	4,43	832	442	254	215	31	139	
	1989	0,52	0,27	0,15	0,14	0,03	4,47	786	410	214	122	27	95	145
	1990	0,55	0,28	0,27	0,23	0,03	4,48	711	393	198	192	23	90	123
	1991	0,34	0,26	0,20	0,08	0,02	4,58	647	222	168	129	17	77	107
	1992	0,44	0,37	0,18	0,13	0,02	4,55	725	318	207	133	20	68	103
	1993	0,37	0,26	0,18	0,10	0,02	4,62	764	283	195	140	18	53	94
	1994	0,30	0,27	0,19	0,08	0,02	4,69	636	192	172	120	13	69	112
	1995	0,44	0,27	0,26	0,12	0,03	4,59	612	271	167	157	16	62	108
Ualand	1992	0,49	0,30	0,22	0,16	0,31	4,53	2404	1171	714	530	71		
	1993	0,49	0,32	0,24	0,22	0,56	4,53	1531	745	492	365	46		
	1994	0,52	0,38	0,30	0,15	0,33	4,51	2125	1106	802	630	65		
	1995	0,45	0,37	0,27	0,14	0,31	4,51	1838	824	682	499	57		
Vikedal	1984	0,51	0,24	0,27	0,24	0,25	4,57	1932	985	465	516	52		
	1985	0,63	0,30	0,33	0,21	0,20	4,45	2223	1390	672	734	79		
	1986	0,56	0,25	0,30	0,15	0,26	4,53	3017	1680	752	898	89		
	1987	0,54	0,27	0,34	0,13	0,18	4,51	1943	1059	519	663	60		
	1988	0,43	0,26	0,25	0,13	0,24	4.51	2694	1163	712	684	84		
	1989	0,53	0,32	0,23	0,14	0,26	4,46	2998	1582	949	704	104		
	1990	0,44	0,22	0,31	0,15	0,35	4,58	3341	1463	724	1036	88		
	1991	0,44	0,26	0,27	0,14	0,33	4,60	2962	1293	764	797	75		
	1992	0,40	0,22	0,24	0,12	0,22	4,70	3214	1281	710	771	64		
	1993	0,41	0,24	0,27	0,22	0,48	4,69	2009	818	484	545	41		
	1994	0,47	0,28	0,30	0,15	0,36	4,64	2744	1277	780	833	63		
	1995	0,35	0,23	0,23	0,13	0,24	4,72	2635	914	607	609	50		
Voss	1990	0,29	0,15	0,08	0,10	0,15	4,68	2053	595	300	169	43		
	1991	0,28	0,18	0,11	0,10	0,18	4,67	1214	342	213	130	26		
	1992	0,27	0,16	0,07	0,06	0,07	4,70	1627	436	255	110	32		
	1993	0,24	0,13	0,08	0,16	0,31	4,82	1162	282	148	96	17		
	1994	0,28	0,16	0,12	0,21	0,14	4,79	1473	408	234	178	24		
	1995	0,21	0,14	0,12	0,08	0,11	4,82	1439	303	208	168	22		
Haukeland	74/75	0,31	0,13	0,15	0,17	0,29	4,70	3901	1207	522	582	78		
	75/76	0,36	0,10	0,17	0,17	0,37	4,73	4551	1636	431	753	85		
	76/77	0,59	0,23	0,45	0.18	0,25	4,59	1808	1060	417	813	46		
	1982	0,48	0,18	0,20	0,14	0,24	4,56	3688	1756	674	722	101		
	1983	0,32	0,14	0,14	0,15	0,26	4,70	4769	1536	647	687	96		
	1984	0,42	0,16	0,28	0,20	0,22	4,63	2792	1157	454	783	65		
	1985	0,44	0,21	0,26	0,13	0,15	4,61	2930	1276	606	768	71		
	1986	0,36	0,16	0,20	0,12	0,20	4,71	4009	1459	621	796	77		
	1987	0,44	0,20	0,28	0,16	0,18	4,61	2493	1100	498	692	61		
	1988	0,35	0,21	0,28	0,14	0,24	4,63	3123	1096	642	872	74		
	1989	0,32	0,18	0,15	0,13	0,26	4,71	4525	1426	798	691	88		
	1990	0,27	0,13	0,15	0,11	0,29	4,79	5017	1364	665	744	82		
	1991	0,30	0,16	0,18	0,15	0,29	4,75	3744	1126	617	678	66		
	1992	0,32	0,17	0,17	0,14	0,22	4,77	4436	1421	768	771	76		
	1993	0,34	0,19	0,26	0,26	0,65	4,77	2891	974	556	760	50		
	1994	0,30	0,18	0,20	0,16	0,28	4,83	3670	1108	668	751	55		
	1995	0,21	0,14	0,17	0,11	0,22	4.89	3631	766	505	616	47		
Nausta	1985	0,29	0,13	0,09	0,09	0,12	4,70	1943	561	246	177	39		
	1986	0,27	0,10	0,08	0,09	0,16	4,74	2314	614	227	176	42		
	1987	0,27	0,12	0,11	0,09	0,11	4,72	1969	523	236	213	37		
	1988	0,21	0,13	0,09	0,14	0,23	4,68	2253	476	302	193	47	91	
	1989	0,21	0.12	0,07	0,10	0,23	4,80	3330	708	407	227	53	72	
	1990	0,23	0,11	0,07	0,09	0,23	4,78	3549	808	380	254	58	80	
	1991	0,19	0,12	0,09	0,12	0,30	4,83	2411	470	291	219	35	73	
	1992	0,21	0,13	0,07	0,09	0,15	4,80	2962	633	373	205	47	78	
	1993	0,23	0,13	0,10	0,17	0,39	4,87	2215	509	277	211	30	66	
	1994	0,20	0,12	0,15	0,10	0,19	4,96	2747	563	339	415	30	64	
	1995	0,18	0,11	0,13	0,08	0,17	4,91	2510	451	283	321	31	.	
Karvatn	1978*	0,16	0,05	0,09	0,11	0,13	4,98	1317	211	66	119	14		
	1979	0,23	0,09	0,08	0,10	0,10	4,63	1248	287	112	100	29		
	1980	0,20	0,07	0,08	0,11	0,13	4,88	1225	245	86	98	16		
	1981	0,20	0,08	0,15	0,17	0,25	4,96	1101	220	88	165	12		
	1982	0,26	0,08	0,11	0,15	0,16	4,87	995	256	78	112	13		
	1983	0,14	0,05	0,06	0,18	0,20	5,08	1918	265	100	106	16		
	1984	0,24	0,10	0.18	0,22	0,18	5,04	914	216	91	166	8		

Tabell A.1.21 forts.

Stasjon	Ar	Árlige middelkonsentrasjoner						Arsnedbor		Ȧrlig vât	avsetnin		Tarra	setning
		$\begin{array}{\|c\|} \hline \begin{array}{c} \mathrm{sO4}-\mathrm{S} \\ \mathrm{mg} \Lambda \end{array} \\ \hline \end{array}$	$\begin{gathered} \mathrm{NO}-\mathrm{N} \\ \mathrm{mg} / \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NH} 4-\mathrm{N} \\ \mathrm{mg} / \mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} / \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} / \end{gathered}$	pH	mm	SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\underset{\text { mekv/m² }}{\stackrel{\mathrm{H}}{\mathrm{H}}+}$	$\begin{gathered} \mathrm{s} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$
Kârvatn lorts.	1985	0,20	0,07	0,10	0,15	0,11	5,00	1462	298	100	149	15		
	1986	0,20	0,07	0,13	0,10	0,11	4,95	1277	260	89	162	14		
	1987	0,24	0,09	0,12	0,15	0,17	4,87	1464	357	129	176	20	68	
	1988	0,11	0,06	0,09	0,13	0,19	5,09	1550	164	91	143	13	76	149
	1989	0,11	0,06	0,12	0,13	0,26	5,11	1539	168	97	187	12	55	116
	1990	0,11	0,05	0,07	0,07	0,14	5,07	1520	173	69	105	13	60	107
	1991	0,12	0,06	0,10	0,12	0,24	5,14	1619	190	102	170	12	52	89
	1992	0,10	0,07	0,06	0,11	0,18	5,17	1620	159	113	94	11	62	97
	1993	0,10	0,06	0,12	0,12	0,18	5,16	1423	148	87	169	10	45	88
	1994	0,11	0,07	0,08	0,12	0,15	5,12	1475	168	100	120	11	53	124
	1995	0,08	0,05	0,06	0,10	0,15	5,17	1661	134	80	106	19	39	107
Selbu	1990	0,16	0,06	0,02	0,06	0,10	4,84	1339	220	83	31	19		
	1991	0,18	0,09	0,06	0,11	0,22	4,94	1336	240	125	80	15		
	1992	0,14	0,07	0,03	0,11	0,20	4,95	1402	193	103	45	16		
	1993	0,15	0,09	0,06	0,11	0,17	5,01	1290	193	117	80	13		
	1994	0,16	0,09	0,11	0,07	0,12	5,02	1143	179	105	129	11		
	1995	0,15	0,08	0,12	0,08	0,13	5,01	1411	206	113	166	14		
Hrylandet	1987*	0,34	0.15	0,36	0,14	0,18	4,98	803	269	124	292	9	97	
	1988	0,22	0,11	0,17	0,16	0,20	5,00	1311	283	147	224	13	95	
	1989	0,17	0,10	0,14	0,20	0,45	5,11	1590	270	162	220	12		
	1990	0,21	0,10	0,13	0,14	0,26	4,92	1605	337	162	214	19		
	1991	0,23	0,11	0,20	0,21	0,31	5,10	1312	302	146	257	10		
	1992	0,15	0,09	0,15	0,16	0,36	5,16	1415	214	122	215	10		
	1993	0,20	0,12	0,20	0,17	0,35	5,10	1145	230	138	234	9		
	1994	0,15	0,09	0,22	0,12	0,25	5,23	1182	175	107	265	7		
	1995	0.17	0,10	0,22	0,47	0,27	5,20	1509	259	153	332	9		
Namsvatn	1991	0,18	0,11	0,20	0,08	0,12	5,13	1014	181	115	198	8		
	1992	0,14	0,10	0,12	0,12	0,19	5,12	1081	155	105	129	8		
	1993	0,14	0,10	0,17	0,15	0,16	5,20	1004	144	98	172	6		
	1994	0,14	0,10	0,17	0,29	0,11	5,18	902	129	94	152	6		
	1995	0,16	0,10	0,20	0,11	0,15	5.18	1201	188	121	243	8		
Tustervatn	1973	0,24				0,18	4,94	1336	321			15		
	1974	0,28				0,11	4,88	695	195			9		
	1975	0,25				0,33	4,91	1756	439			22		
	1976	0,27				0,16	4,97	1064	287			11		
	1977	0,30	0,09	0,11	0,17	0,16	4,91	1111	333	100	122	14		
	1978	0,23	0,08	0,10	0,16	0.16	4,85	1128	259	90	113	16		
	1979	0,28	0,08	0,13	0,15	0.11	4,73	1168	327	93	152	22		
	1980	0,27	0,08	0,14	0,47	0,16	4,98	858	229	71	122	9		
	1981	0,18	0,07	0,10	0,21	0,15	5,00	1099	198	77	110	11		
	1982	0,16	0,08	0,09	0,22	0,47	4,98	1385	227	109	121	15		
	1983	0,20	0,06	0,09	0,16	0,22	4,90	1665	337	101	142	21		
	1984	0,24	0,09	0,09	0,12	0,10	4,85	1056	250	94	89	15		
	1985	0,22	0,08	0,10	0,12	0,15	4,93	1344	298	107	132	16		
	1986	0,26	0,09	0,12	0,12	0,15	4,88	1060	278	94	131	14		
	1987	0,22	0,08	0,11	0,12	0,12	4,89	1163	253	98	133	15	96	
	1988	0,13	0,07	0,09	0,13	0,15	5,04	1159	145	83	106	10	88	131
	1989	0,19	0,08	0,10	0,18	0,40	5,00	1825	346	137	178	18	40	119
	1990	0,16	0,09	0,14	0,11	0,21	4,99	1508	245	133	214	16	65	125
	1991	0,17	0,10	0,14	0,14	0,21	5,04	1400	242	137	197	13	62	148
	1992	0,15	0,08	0,15	0,19	0,37	5,12	1507	223	126	221	11	49	123
	1993	0,14	0,08	0,16	0,24	0,50	5,19	1340	182	111	209	9	44	126
	1994	0,10	0,08	0,13	0,12	0,15	5,24	1117	114	87	144	6	48	147
	1995	0,09	0,06	0,12	0,13	0,21	5,22	1515	136	96	186	9	47	132
Qverbygd	1987*	0,23	0,05	0,08	0,12	0,14	4,92	424	100	23	35	5		
	1988	0,20	0,06	0,05	0,09	0,10	4,84	555	112	33	30	8		
	1989	0,16	0,06	0,06	0,09	0.18	4,98	794	125	45	51	8		
	1990	0,22	0,06	0,07	0,10	0.15	4,90	708	152	44	52	9		
	1991	0,25	0,09	0,07	0,11	0.18	4,90	706	176	60	49	9		
	1992	0,17	0,07	0,06	0,12	0,18	5,08	662	109	44	38	6		
	1993	0.17	0,07	0,07	0,26	0,43	5,06	680	117	48	45	6		
	1994	0,20	0,10	0,13	0,12	0,14	5,03	538	108	56	68	5		
	1995	0,11	0,06	0,11	0,14	0,11	5,13	659	73	42	74	5		
Jergul	1977	0,45	0,13	0,11	0,20	0,04	4,75	344	155	45	38	6		
	1978	0,43	0,10	0,11	0,13	0,02	4,52	351	151	35	39	11		
	1979	0,59	0,18	0,13	0,14	0,03	4,33	306	181	55	40	14		
	1980	0,42	0,12	0,09	0,12	0,03	4,57	262	110	31	24	7		
	1981	0,46	0,13	0,12	0,11	0,02	4,57	434	200	56	52	12		
	1982	0,36	0,13	0,14	0,10	0,03	4,65	473	172	62	65	11		
	1983	0,41	0,11	0,11	0,13	0,04	4,60	382	156	41	43	10		
	1984	0,50	0,15	0,22	0,14	0,03	4,50	342	172	50	76	11		
	1985	0,43	0,12	0,34	0.13	0,05	4.63	406	174	49	137	10		

Tabell A.1.21 forts.

Stasjon	Ar	Arrlige middelkonsentrasjoner						$\begin{array}{\|c\|} \hline A_{\text {rsnedber }} \\ \hline \mathrm{mm} \\ \hline \end{array}$	Arrlig vátavsetning				Terravsetning	
		$\begin{gathered} \hline \mathrm{SO4-S} \\ \mathrm{mg} \Lambda \\ \hline \end{gathered}$	NO3-N $\mathrm{mg} /$	$\begin{gathered} \mathrm{NH} 4-\mathrm{N} \\ \mathrm{mg} / \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} / \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} / \end{gathered}$	pH		SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	H+ mekv/m²	$\begin{gathered} \mathrm{s} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$
Jergul, forts.	1986	0,49	0,16	0.14	0,12	0,04	4,60	250	122	40	34	6		
	1987	0,41	0,12	0,10	0,11	0,03	4,67	296	121	35	29	6	180	
	1988	0,30	0,13	0,10	0,09	0,03	4,65	406	122	54	40	9	134	81
	1989	0,42	0,14	0,15	0,09	0,03	4,63	385	163	54	59	9	77	66
	1990	0,22	0,15	0,08	0,04	0,03	4,69	276	62	41	23	6	114	68
	1991	0,31	0,14	0,10	0,05	0,03	4,65	377	118	51	37	8	108	100
	1992	0,23	0,13	0,05	0,08	0,03	4,80	449	101	60	22	7	92	66
	1993	0,29	0,14	0,07	0,11	0,06	4,74	343	99	47	22	6	97	53
	1994	0,24	0,15	0,07	0,06	0,03	4,78	269	65	41	17	4	65	58
	1995	0,25	0,11	0,07	0,06	0,03	4,76	459	116	49	32	8	94	62
Svanvik	1987	0,68	0,12	0,21	0,13	0,10	4,49	365	247	42	76	12	711	173
	1988	0,57	0,13	0,13	0,18	0,14	4,49	390	221	52	50	13	602	160
	1989	0,72	0,12	0,10	0,19	0,12	4,47	424	306	50	42	14	571	130
	1990	0,48	0,13	0,08	0,11	0,13	4,50	266	127	36	22	8	691	123
	1991	0,56	0,14	0,16	0,08	0,09	4,55	389	218	55	61	11	652	139
	1992	0,51	0,12	0,22	0,10	0,10	4,71	432	220	53	93	8	422	165
	1993	0,62	0,16	0,23	0,16	0,14	4,66	331	207	52	78	7	530	135
	1994	0,58	0.17	0,35	0,12	0,12	4,71	379	219	66	132	7	541	111
	1995	0,59	0,11	0,19	0,13	0,13	4,62	395	233	45	74	9	642	133
Karpdalen	1991	0,91	0,16	0,14	0,16	0,28	4,33	256	233	42	36	12		
	1992	0,96	0,20	0,31	0,26	0,35	4,43	315	302	62	98	12		
	1993	0,86	0,24	0,23	0,29	0,43	4,41	258	223	61	59	10		
	1994	0,60	0,23	0,18	0,15	0,21	4,58	414	250	96	73	11		
	1995	0,63	0,19	0,18	0,35	0,31	4,52	383	241	71	69	11		
Ny-Alesund	1981	0,24	0,05	0,05	1,03	0,41	5,11	366	88	20	17	3		
	1982	0,39	0,08	0,05	0,92	2,01	5,01	206	80	16	10	2		
	1983	0,25	0,05	0,10	0,40	0,42	5,13	237	59	11	24	2		
	1984	0,64	0,17	0,21	0,71	0,93	4,60	366	233	62	76	9		
	1985	0,61	0,14	0,13	0.71	1,29	4,72	237	144	33	31	5		
	1986	0,40	0,07	0.49	0,55	0,58	4,98	306	122	20	150	3		
	1987	0,69	0,12	0,10	0,64	0,91	4,63	390	271	46	40	9		
	1988	0,27	0,07	0,21	0,54	0,58	5,18	307	84	21	64	2		
	1989	0,38	0,05	0,06	0,87	1,48	5,55	295	113	15	19	1	35	
	1990	0,33	0,07	0,06	0,52	0,79	4,92	410	137	30	26	5	41	20
	1991	0,34	0,11	0,10	0,80	1,13	4,96	424	145	47	44	5	35	27
	1992	0,43	0,10	0,11	0,80	1,03	5,11	272	116	27	29	2	31	21
	1993	0,29	0,10	0,08	0,51	0,91	5,02	489	140	47	41	5	32	29
	1994	0,32	0,08	0,29	0,59	0,63	5,35	280	90	22	80	1	24	30
	1995	0,30	0,10	0,15	0,89	0,79	5,26	238	71	23	36	1	25	.

Tabell A.2.1: Månedlige og årlige middelkonsentrasjoner av bly i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	4,15	1,75	3,44	1,12	0,68	0,75	1,16	1,12	0,98	3,18	4,30	1,88	2,16
Lista	2,49	1,11	2,11	1,10	2,88	1,54	1,56	3,65	1,24	3,17	4,63	10,26	2,34
Solhomfjell	3,39	1,48	2,66	0,90	1,81	0,91	1,36	2,67	1,38	3,67	2,22	3,53	2,01
Møsvatn	0,65	0,24	1,46	2,60	0,80	0,47	0,62	4,31	0,78	1,15	1,28	1,46	0,86
Nordmoen	3,32	1,42	1,45	0,60	4,66	1,22	1,65	3,04	1,53	2,26	1,23	0,80	2,03
Osen	2,63	3,81	1,98	5,79	2,31	1,19	1,01	2,14	0,93	3,91	1,27	0,76	2,10
Valdalen	1,01	0,71	0,81	1,88	1,61	1,43	0,95	1,47	2,87	1,10	0,68	2,70	1,38
Ualand	2,12	0,79	1,61	1,12	1,06	0,70	1,01	1,85	0,99	2,89	2,66	3,94	1,71
Kàrvatn	0,23	0,18	0,27	0,33	0,35	0,36	0,15	0,30	0,18	0,14	0,20	0,11	0,23
Namsvatn	0,20	0,31	0,31	0,29	0,91	1,10	0,59	0,47	0,52	0,59	0,31	0,28	0,49
Øverbygd	0,37	0,40	0,50	1,63	0,54	1,06	0,40	0,21	0,85	0,41	0,14	0,15	0,38
Jergul	1,33	0,87	1,63	2,82	2,11	0,80	0,28	0,54	0,59	0,54	0,67	6,17	0,79
Svanvik	2,92	1,62	3,21	4,34	9,44	2,14	1,13	0,96	2,92	1,16	0,52	0,68	1,70
Karpdalen	1,82	1,74	1,22	4,11	3,84	2,22	0,31	1,71	2,13	1,08	2,41	0,69	1,52

Tabell A.2.2: Månedlige og årlige middelkonsentrasjoner av kadmium i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,070	0,041	0,084	0,037	0,022	0,014	0,028	0,020	0,025	0,085	0,089	0,048	0,049
Lista	0,053	0,020	0,040	0,056	0,073	0,039	0,044	0,052	0,037	0,094	0,098	0,222	0,056
Solhomfjell	0,103	0,140	0,076	0,030	0,056	0,031	0,069	0,064	0,035	0,087	0,043	0,182	0,067
Møsvatn	0,019	0,012	0,035	0,125	0,012	0,020	0,035	0,058	0,020	0,028	0,033	0,032	0,025
Nordmoen	0,071	0,014	0,027	0,010	0,069	0,005	0,039	0,105	0,040	0,065	0,041	0,097	0,041
Osen	0,152	0,138	0,050	0,116	0,054	0,026	0,030	0,139	0,033	0,199	0,025	0,021	0,073
Valdalen	0,011	0,018	0,017	0,049	0,039	0,031	0,021	0,026	0,046	0,028	0,013	0,058	0,028
Ualand	0,050	0,008	0,041	0,013	0,018	0,015	0,015	0,028	0,014	0,054	0,043	0,094	0,032
Kárvatn	0,046	0,018	0,009	0,012	0,010	0,005	0,010	0,009	0,006	0,009	0,012	0,003	0,013
Namsvatn	0,009	0,012	0,015	0,009	0,027	0,020	0,020	0,010	0,011	0,013	0,013	0,014	0,014
Øverbygd	0,018	0,009	0,008	0,050	0,019	0,034	0,023	0,002	0,029	0,019	0,007	0,009	0,014
Jergul	0,086	0,016	0,063	0,141	0,058	0,048	0,018	0,037	0,038	0,019	0,009	0,072	0,036
Svanvik	0,292	0,057	0,273	0,363	0,348	0,099	0,067	0,072	0,133	0,137	0,071	0,028	0,110
Karpdalen	0,114	0,117	0,101	0,244	0,160	0,059	0,015	0,063	0,133	0,081	0,041	0,062	0,066

Tabell A.2.3: Månedlige og årlige middelkonsentrasjoner av sink i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	7,81	3,07	9,12	4,28	2,72	1,95	7,48	3,84	3,75	12,82	10,85	5,67	5,99
Lista	7,17	5,17	7,52	9,72	9,71	6,07	7,66	21,78	5,44	9,90	21,09	26,25	8,55
Solhomfjell	9,43	5,42	6,15	5,30	4,89	2,17	7,01	11,03	3,55	8,11	6,16	45,77	6,01
Masvatn	1,19	0,42	4,65	14,24	2,64	1,09	3,53	7,54	2,50	3,16	6,40	6,49	2,81
Nordmoen	5,63	2,84	6,06	2,77	9,35	3,82	5,75	7,36	4,05	6,22	4,99	8,75	5,18
Osen	11,07	10,21	9,87	13,25	14,18	5,34	5,39	12,59	5,01	11,48	5,82	3,50	8,82
Valdalen	1,87	2,02	2,51	5,75	4,19	2,36	6,23	4,73	6,78	6,07	4,07	16,67	4,62
Ualand	3,02	1,16	3,06	2,80	2,14	3,01	5,05	4,61	1,49	5,43	4,63	8,17	3,32
Kárvatn	0,73	0,52	1,32	1,87	1,36	2,06	2,47	1,03	0,95	0,59	1,90	0,46	1,16
Namsvatn	1,01	1,91	3,54	2,35	1,68	2,22	6,41	1,00	1,92	1,79	1,67	2,77	2,28
Øverbygd	2,88	1,29	2,90	5,67	2,87	4,87	3,95	1,36	4,54	1,61	1,21	1,60	2,27
Jergul	6,24	2,24	3,88	8,77	5,58	3,96	4,49	2,43	7,16	1,59	0,78	15,46	3,45
Svanvik	6,87	2,28	5,46	6,95	24,65	6,27	4,55	3,37	12,90	4,38	1,94	6,77	5,36
Karpdalen	10,28	4,61	5,56	18,01	12,23	3,42	2,21	2,28	3,95	4,11	3,01	3,18	3,82

Tabell A.2.4: Månedlige og årlige middelkonsentrasjoner av nikkel i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	<0.20	<0.20	<0.20	0,36	0,63	0,38	0,40	1,52	0,56	0,57	0,67	1,22	0,35
Solhomfjell	0,97	0,81	0,94	0,52	1,01	0,33	0,39	0,84	0,35	0,55	0,71	2,31	0,67
Møsvatn	0,70	<0.20	<0.20	0,39	0,38	<0.20	<0.20	0,47	0,37	0,48	0,65	0,45	0,31
Valdalen	<0.20	0,32	0,60	0,22	0,22	0,24	0,37	0,34	1,20	0,43	0,33	1,95	0,42
Ualand	<0.20	<0.20	<0.20	<0.20	<0.20	0,27	0,27	0,45	0,33	0,41	0,38	0,58	0,23
Namsvatn	0,56	0,51	0,29	<0.20	0,56	<0.20	<0.20	0,57	0,37	<0.20	<0.20	$<0,20$	0,27
Øverbygd	$<0,20$	<0.20	$<0,20$	3,87	0,78	0,30	0,22	0,22	0,40	0,72	0,21	<0.20	0,35
Svanvik	18,77	4,65	17,45	35,54	69,16	27,64	3,77	14,82	26,66	18,74	8,61	1,58	17,35
Karpdalen	8,53	6,37	4,05	28,61	23,22	12,38	7,03	12,11	14,84	11,84	6,70	4,24	10,33

Tabell A.2.5: Månedlige og årlige middelkonsentrasjoner av arsen i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ȦR
Lista	0,30	0,10	0,37	0,23	0,45	0,18	0,23	0,46	0,31	0,69	0,52	1,43	0,36
Solhomfjell	0,48	0,20	0,54	0,12	<0.10	<0.10	<0.10	0,31	0,12	0,16	0,13	0,37	0,22
Møsvatn	<0.10	<0.10	0,21	0,32	<0.10	<0.10	<0.10	0,26	0,12	<0.10	<0.10	0,16	<0.10
Valdalen	<0.10	<0.10	<0.10	0,13	<0.10	<0.10	<0.10	0,22	0,23	0,16	<0.10	0,12	<0.10
Ualand	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0,12	<0.10	0,13	0,11	0,47	<0.10
Namsvatn	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0,16	<0.10	<0.10
Øverbygd	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Svanvik	3,55	0,92	2,09	3,64	5,47	1,83	1,16	1,40	2,35	2,26	1,55	0,15	1,82
Karpdalen	1,11	1,52	0,75	3,56	1,95	1,27	0,23	0,96	1,56	1,28	0,56	1,18	1,01

Tabell A.2.6: Månedlige og årlige middelkonsentrasjoner av kopper i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	A R
Lista	0,87	0,64	0,65	0,69	1,66	0,63	2,44	3,28	0,60	1,08	1,87	2,49	1,05
Solhomfjell	2,00	1,49	0,69	0,95	1,62	0,13	1,57	1,74	0,30	1,03	1,21	6,85	1,03
Møsvatn	<0.10	<0.10	0,65	2,53	0,70	<0.10	0,18	0,98	0,27	4,42	1,00	1,00	0,89
Valdalen	<0.10	<0.10	<0.10	0,66	0,88	0,22	0,79	0,75	0,88	1,21	1,08	5,92	0,78
Ualand	<0.10	00.10	<0.10	<0.10	0,13	0,36	0,32	0,78	0,41	0,67	0,54	1,34	0,30
Namsvatn	<0.10	<0.10	<0.10	0,19	<0.10	<0.10	0,30	0,26	0,42	0,21	0,28	0,32	0,18
Øverbygd	0,17	0,41	0,13	1,91	0,47	0,54	0,95	0,25	1,26	0,42	0,21	0,37	0,45
Svanvik	41,78	5,65	38,28	47,61	71,89	19,26	2,97	12,67	24,31	21,43	13,30	1,49	17,37
Karpdalen	9,93	9,37	7,96	29,98	18,61	5,98	2,94	8,15	14,61	8,08	4,34	6,08	7,14

Tabell A.2.7: Månedlige og årlige middelkonsentrasjoner av kobolt i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Solhomfjell	0,05	0,03	0,04	<0.01	0,04	<0.01	0,02	0,09	0,02	0,03	0,04	0,14	0,03
Møsvatn	0,02	<0.01	0,02	0,03	<0.01	<0.01	<0.01	0,04	0,02	0,02	0,03	0,02	0,01
Valdalen	<0.01	<0.01	<0.01	0,03	0,02	<0.01	0,02	0,02	0,06	0,03	0,02	0,09	0,02
Ualand	<0.01	<0.01	<0.01	<0.01	<0.01	0,01	0,02	0,04	<0.01	0,03	0,02	0,03	0,01
Namsvatn	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0,02	0,03	0,04	0,01	<0.01	0,01	0,01
Qverbygd	<0.01	<0.01	<0.01	0,10	<0.01	0,03	0,01	0,02	0,10	0,03	<0.01	<0.01	0,02
Svanvik	0,69	0,13	0,79	1,21	2,59	0,97	0,14	0,50	0,86	0,60	0,27	0,06	0,60
Karpdalen	0,32	0,28	0,19	0,97	0,97	0,48	0,26	0,43	0,51	0,38	0,22	0,14	0,37

Tabell A.2.8: Månedlige og årlige middelkonsentrasjoner av krom i nedbøren på norske bakgrunnstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1,36	1,97	2,70	<0.20	<0.20	0,76
Solhomfjell	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0,33	<0.20	0,76	<0.20	0,58	<0.20
Møsvatn	<0.20	<0.20	2,31	0,64	0,23	<0.20	<0.20	0,28	<0.20	<0.20	<0.20	<0.20	0,28
Valdalen	<0.20	<0.20	<0.20	0,55	0,22	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0,79	<0.20
Ualand	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0,22	<0.20	<0.20	<0.20	<0.20	<0.20
Namsvatn	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dverbygd	<0.20	<0.20	<0.20	0,46	<0.20	0,25	<0.20	<0.20	0,25	<0.20	<0.20	<0.20	<0.20
Svanvik	0,28	<0.20	0,57	1,06	1,81	0,64	<0.20	0,30	0,77	0,26	<0.20	<0.20	0,38
Karpdalen	0,76	0,44	<0.20	2,55	1,34	0,32	0,22	0,45	0,63	0,36	0,32	0,22	0,40

Tabell A.2.9: Månedlig og årlig våtavsetning av bly på norske
bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	900	339	483	42	64	78	41	18	308	492	157	69	2986
Lista	381	155	282	37	172	64	99	19	123	322	206	245	2102
Solhomfjell	546	121	350	26	177	132	48	27	349	219	62	51	2108
Møsvatn	35	13	60	30	39	40	41	34	99	92	25	8	515
Nordmoen	450	114	93	32	277	124	163	31	122	134	24	10	1573
Osen	135	144	65	155	212	110	118	46	46	187	30	2	1252
Valdalen	56	19	32	47	115	125	71	75	117	54	18	52	782
Ualand	623	244	262	67	100	43	158	60	186	825	495	112	3175
Kárvatn	34	31	29	51	27	34	14	74	7	25	27	22	373
Namsvatn	16	43	31	19	64	102	43	43	20	132	23	31	567
Øverbygd	9	13	11	13	12	41	31	24	17	43	14	9	236
Jergul	6	17	25	23	29	72	12	45	11	37	17	21	314
Svanvik	23	30	18	29	127	138	67	74	43	75	21	5	651
Karpdalen	26	27	14	29	26	174	24	103	27	73	72	12	601

Tabell A.2.10: Månedlig og årlig våtavsetning av kadmium på norske bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	15	8	12	1	2	1	1	0	8	13	3	2	67
Lista	8	3	5	2	4	2	3	0	4	10	4	5	50
Solhomfjell	17	11	10	1	5	4	2	1	9	5	1	3	70
Masvain	1	1	1	1	1	2	2	0	2	2	1	0	15
Nordmoen	10	1	2	1	4	1	4	1	3	4	1	1	32
Osen	8	5	2	3	5	2	4	3	2	9	1	0	43
Valdalen	1	0	1	1	3	3	2	1	2	1	0	1	16
Ualand	15	2	7	1	2	1	2	1	3	16	8	3	59
Kárvatn	7	3	1	2	1	0	1	2	0	2	2	1	21
Namsvatn	1	2	1	1	2	2	1	1	0	3	1	2	16
Øverbygd	0	0	0	0	0	1	2	0	1	2	1	1	9
Jergul	0	0	1	1	1	4	1	3	1	1	0	0	14
Svanvik	2	1	2	2	5	6	4	6	2	9	3	0	42
Karpdalen	2	2	1	2	1	5	1	4	2	5	1	1	26

Tabell A.2.11: Månedlig og årlig våtavsetning av sink på norske bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AAR
Birkenes	1693	596	1282	160	257	202	265	61	1179	1981	397	209	8272
Lista	1097	721	1006	329	578	252	488	115	538	1006	940	626	7683
Solhomfjell	1517	444	808	156	479	315	245	110	903	485	172	659	6293
Møsvatn	63	22	192	162	126	93	235	59	316	254	125	34	1682
Nardmoen	763	229	389	148	555	388	567	75	323	370	98	106	4008
Osen	568	387	326	355	1301	493	632	272	246	547	138	11	5256
Valdalen	103	54	101	143	299	207	464	243	276	301	108	323	2622
Ualand	888	359	497	168	201	186	788	150	280	1551	861	232	6161
Kárvatn	107	90	144	293	105	193	229	251	37	107	251	87	1893
Namsvatn	78	262	349	154	119	206	469	93	71	401	124	309	2636
Øverbygd	73	41	64	44	62	190	312	154	89	165	120	95	1408
Jergul	26	43	59	71	77	359	197	206	133	110	20	54	1366
Svanvik	54	42	30	46	331	405	272	259	191	285	80	51	2046
Karpdalen	146	72	63	126	83	267	170	137	49	277	90	55	1517

Tabell A.2.12: Månedlig og årlig våtavsetning av nikkel på norske
bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	$\dot{A} \mathrm{R}$
Lista	15	15	17	12	38	16	25	8	56	58	30	29	317
Solhomfjell	156	67	124	15	99	48	14	8	89	33	20	33	705
Møsvatn	37	5	4	4	18	9	7	4	46	39	13	2	189
Valdalen	6	8	24	5	15	21	27	17	49	21	9	38	241
Ualand	29	31	16	6	9	17	42	15	62	118	71	16	433
Namsvatn	43	70	28	7	40	9	7	53	14	22	7	11	313
Øverbygd	3	3	2	30	17	12	18	25	8	74	21	6	217
Svanvik	149	86	96	238	929	1785	225	1140	395	1219	352	12	6622
Karpdalen	121	99	46	200	157	967	539	727	185	799	200	73	4096

Tabell A.2.13: Månedlig og årlig våtavsetning av arsen på norske bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	46	14	49	8	27	7	15	2	31	70	23	34	327
Solhomfjell	77	17	71	4	5	7	2	3	30	9	4	5	234
Møsvatn	3	3	8	4	2	4	3	2	15	4	1	1	50
Valdalen	3	1	2	3	4	4	4	12	9	8	1	2	53
Ualand	15	15	8	3	5	3	8	4	9	38	20	13	141
Namsvatn	4	7	5	3	4	5	4	5	2	11	12	6	66
Øverbygd	1	2	1	0	1	2	4	6	1	5	5	3	31
Svanvik	28	17	12	24	73	118	69	108	35	147	64	1	696
Karpdalen	16	24	8	25	13	99	17	58	20	86	17	20	400

Tabell A.2.14: Månedlig og årlig våtavsetning av kopper på norske bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	$\dot{A} \mathrm{R}$
Lista	133	89	87	23	99	26	155	17	59	109	83	59	940
Solhomfjell	323	122	91	28	158	19	55	17	76	62	34	99	1083
Mosvatn	3	3	27	29	34	4	12	8	34	356	20	5	533
Valdalen	3	1	2	17	63	19	59	39	36	60	28	115	441
Ualand	15	15	8	3	12	23	50	25	76	192	100	38	557
Namsvatn	4	7	5	12	4	5	22	24	16	48	21	36	203
Øverbygd	4	13	3	15	10	21	75	29	25	43	21	22	281
Svanvik	331	105	211	318	966	1244	178	975	360	1393	544	11	6631
Karpdalen	141	145	90	210	126	467	225	489	182	545	129	105	2832

Tabell A.2.15: Månedlig og årlig våtavsetning av kobolt på norske bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Solhomfjell	9	2	5	0	4	1	1	1	5	2	1	2	33
Møsvatn	1	0	1	0	0	0	0	0	2	2	1	0	9
Valdalen	0	0	0	1	1	0	2	1	2	1	0	2	12
Ualand	1	2	1	0	0	1	2	1	1	7	4	1	23
Namsvatn	0	1	0	0	0	0	1	2	1	3	0	1	12
Øverbygd	0	0	0	1	0	1	1	2	2	3	0	0	12
Svanvik	5	2	4	8	35	62	8	39	13	39	11	0	227
Karpdalen	5	4	2	7	7	38	20	26	6	26	6	2	149

Tabell A.2.16: Månedlig og årlig våtavsetning av krom på norske
bakgrunnsstasjoner, 1995.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	-	14	13	8	18	6	13	7	195	275	9	7	682
Solhomfjell	16	8	13	3	10	14	3	3	25	46	3	8	154
Møsvatn	5	5	95	7	11	9	7	2	13	8	2	1	165
Valdalen	6	3	4	14	16	9	7	5	4	5	3	15	90
Ualand	29	31	16	6	9	6	16	7	19	29	19	3	190
Namsvatn	8	14	10	7	7	9	7	9	4	22	7	11	115
Øverbygd	3	3	2	4	2	10	8	11	5	10	10	6	74
Svanvik	2	2	3	7	24	41	8	23	11	17	4	1	144
Karpdalen	11	7	1	18	9	25	17	27	8	24	9	4	157

Tabell A.2.17: Middelkonsentrasjoner av tungmetaller i nedbør på norske bakgrunnsstasjoner i 1976, august 1978-juni 1979, 1980 (februar-desember) og 1981-1995.

	Stasjon	Birkenes	Nordmoen	Osen	Kárvatn	Jergul	Svanvik
$\begin{aligned} & \text { Bly } \\ & (\mu g / l) \end{aligned}$	1976 $1978 / 79$ 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	12,7 10,8 7,9 7,4 8,8 5,4 6,2 4,1 4,8 3,5 7,4 5,4 3,8 3,6 2,9 3,1 2,6 2,2	4,6 5,6 4,6 3,8 2,6 2,3 1,8 1,7 2,0	$\begin{aligned} & 4,7 \\ & 2,7 \\ & 2,7 \\ & 2,0 \\ & 1,6 \\ & 1,2 \\ & 1,4 \\ & 2,1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,5 \\ & 1,4 \\ & 1,4 \\ & 1,5 \\ & 0,7 \\ & 1,3 \\ & 1,1 \\ & 1,4 \\ & 1,1 \\ & 0,9 \\ & 0,3 \\ & 0,2 \\ & 0,3 \\ & 0,2 \\ & 0,2 \\ & 0,4 \end{aligned}$	$\begin{aligned} & 3,5 \\ & 2,6 \\ & 1,8 \\ & 2,3 \\ & 1,5 \\ & 2,2 \\ & 2,0 \\ & 2,0 \\ & 1,3 \\ & 1,3 \\ & 1,3 \\ & 0,7 \\ & 0,7 \\ & 0,5 \\ & 0,5 \end{aligned}$	$\begin{aligned} & 2,0^{*} \\ & 3,7 \\ & 1,4 \\ & 1,6 \\ & 1,3 \\ & 1,1 \\ & 1,1 \\ & 1,4 \\ & 1,7 \\ & \hline \end{aligned}$
Kadmium ($\mu \mathrm{g} / \mathrm{l})$	1976 $1978 / 79$ 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	0,27 0,27 0,34 0,24 0,69 0,25 0,29 0,09 0,12 0,12 0,12 0,11 0,12 0,06 0,04 0,06 0,05 0,05	$\begin{aligned} & 0,10 \\ & 0,10 \\ & 0,08 \\ & 0,14 \\ & 0,06 \\ & 0,04 \\ & 0,04 \\ & 0,05 \\ & 0,04 \\ & \hline \end{aligned}$	0,31 0,08 0,09 0,03 0,05 0,06 0,05 0,07	$\begin{array}{r} 0,04 \\ 0,06 \\ 0,09 \\ 0,10 \\ 0,12 \\ 0,07 \\ 0,06 \\ 0,01 \\ 0,03 \\ 0,06 \\ 0,05 \\ 0,06 \\ 0,01 \\ <0.01 \\ 0,01 \\ 0,02 \\ 0,01 \\ \hline \end{array}$	0,22 0,08 0,05 0,11 0,07 0,09 0,08 0,03 0,07 0,07 0,05 0,16 0,02 0,05 0,05 0,03 0.04	1,
Sink ($\mu \mathrm{g}$ /)	1976 $1978 / 79$ 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	28,9 17,9 15,7 6,2 7,0 6,6 12,1 9,4 9,0 9,2 14,1 11,4 9,5 7,0 5,2 6,5 5,0 6,0	8,4 11,0 7,3 5,6 4,3 4,4 3,5 4.0 5.2	$\begin{gathered} 12,7 \\ 5,4 \\ 5,6 \\ 4,2 \\ 5,5 \\ 3,5 \\ 5,9 \\ 8,8 \\ \hline \end{gathered}$	$\begin{aligned} & 3,0 \\ & 4,2 \\ & 3,0 \\ & 3,1 \\ & 2,9 \\ & 3,6 \\ & 4,0 \\ & 3,2 \\ & 2,5 \\ & 4,2 \\ & 1,8 \\ & 1,0 \\ & 1,0 \\ & 0,8 \\ & 0,6 \\ & 1,2 \\ & 1,2 \\ & \hline \end{aligned}$	$\begin{aligned} & 7,8 \\ & 4,5 \\ & 3,5 \\ & 3,1 \\ & 3,6 \\ & 9,8 \\ & 5,0 \\ & 5,2 \\ & 4,6 \\ & 5,1 \\ & 3,3 \\ & 2,7 \\ & 2,2 \\ & 1,6 \\ & 2,4 \\ & 4,1 \\ & 3,5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6,0^{*} \\ & 7,4 \\ & 4,6 \\ & 6,2 \\ & 3,4 \\ & 2,8 \\ & 3,0 \\ & 5,0 \\ & 5,4 \\ & \hline \end{aligned}$
Nikkel ($\mu \mathrm{g} / \mathrm{l}$)	$\begin{aligned} & 1987 \\ & 1988 \\ & 1989 \\ & 1990 \\ & 1991 \\ & 1992 \\ & 1993 \\ & 1994 \\ & 1995 \\ & \hline \end{aligned}$						$\begin{array}{r} 19,9 \\ 12,8 \\ 15,5 \\ 11,4 \\ 9,3 \\ 8,0 \\ 10,9 \\ 13,4 \\ 17,4 \\ \hline \end{array}$
Arsen ($\mu \mathrm{g} / \mathrm{l}$)	$\begin{aligned} & 1987 \\ & 1988 \\ & 1989 \\ & 1990 \\ & 1991 \\ & 1992 \\ & 1993 \\ & 1994 \\ & 1995 \\ & \hline \end{aligned}$						$\begin{aligned} & 2,4^{*} \\ & 1,6 \\ & 1,3 \\ & 1,8 \\ & 1,1 \\ & 1,1 \\ & 1,2 \\ & 1,4 \\ & 1,8 \\ & \hline \end{aligned}$
Kopper ($\mu \mathrm{g} / \mathrm{l}$)	$\begin{aligned} & 1987 \\ & 1988 \\ & 1989 \\ & 1990 \\ & 1991 \\ & 1992 \\ & 1993 \\ & 1994 \\ & 1995 \\ & \hline \end{aligned}$					-	$11,8^{*}$ 14,6 14,4 13,6 10,4 11,9 1,4 1,5 17,4
Kobolt ($\mu \mathrm{g} / \mathrm{l}$)	$\begin{array}{r} 1990 \\ 1991 \\ 1992 \\ 1993 \\ 1994 \\ 1995 \\ \hline \end{array}$						$\begin{aligned} & 0,4 \\ & 0,3 \\ & 0,3 \\ & 0,4 \\ & 0,4 \\ & 0,6 \end{aligned}$
Krom (Hg / l)	$\begin{aligned} & 1990 \\ & 1991 \\ & 1992 \\ & 1993 \\ & 1994 \\ & 1995 \\ & \hline \end{aligned}$						$\begin{aligned} & 0,5 \\ & 0,4 \\ & 0,5 \\ & 0,6 \\ & 0,4 \\ & 0,4 \\ & \hline \end{aligned}$

*Málingene startet 16. mars 1987

Tabell A.3.1: Månedlige og årlige middelkonsentrasjoner av svoveldioksid i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g}$ S/m³.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,88	0,17	0,64	0,20	0,35	0,24	0,23	0,31	0,16	0,28	0,23	0,15	0,31
Søgne	0,92	0,34	0,86	0,39	0,53	0,35	0,32	0,28	0,49	0,50	0,38	0,70	0,51
Skreadalen	0,89	0,11	0,33	0,12	0,18	0,07	0,09	0,18	0,07	0,20	0,16	0,29	0,22
Prestebakke	1,60	0,23	0,45	0,24	0,26	0,22	0,23	0,26	0,09	0,47	0,27	0,24	0,39
Nordmoen	1,00	0,07	0,24	0,10	0,11	0,09	0,15	0,10	0,06	0,13	0,12	0,09	0,19
Gulsvik	1,41	0,06	0,33	0,08	0,09	0,05	0,07	0,06	0,04	0,10	0,05	0,04	0,20
Osen	1,10	0,06	0,30	0,08	0,09	0,04	0,07	0,07	0,04	0,11	0,09	0,13	0,19
Kárvatn	0,84	0,08	0,53	0,05	0,05	0,05	0,07	0,04	0,02	0,02	0,02	0,11	0,16
Tustervath	0,87	0,11	0,29	0,08	0,10	0,04	0,10	0,04	0,04	0,03	0,06	0,09	0,16
Jergul	1,45	0,29	1,79	0,34	0,77	0,46	0,10	0,16	0,07	0,75	0,62	0,18	0,59
Svanvik	6,04	3,74	7,65	7,63	6,71	11,04	1,35	3,08	1,42	3,42	8,33	0,54	5,07
Zeppelinfjelle!	0,32	0,25	0,28	0,10	0,04	0,04	0,06	0,05	0,05	0,04	0,12	0,44	0,15

Tabell A.3.2: Månedlige og årlige middelkonsentrasjoner av sulfat i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g} \mathrm{S/m}{ }^{3}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,63	0,25	0,85	0,43	0,69	0,70	0,89	0,61	0,52	0,72	0,33	0,25	0,58
Søgne	0,73	0,38	1,02	0,52	0,85	0,72	1,00	0,68	0,62	0,95	0,51	0,40	0,72
Skreadalen	0,41	0,20	0,35	0,51	0,65	0,46	0,62	0,54	0,42	0,54	0,20	0,22	0,43
Prestebakke	0,80	0,34	0,77	0,53	0,86	0,74	0,86	0,66	0,55	0,91	0,43	0,38	0,66
Nordmoen	0,80	0,21	0,68	0,50	0,57	0,65	0,60	0,54	0,46	0,75	0,33	0,36	0,54
Gulsvik	0,51	0,13	0,60	0,38	0,43	0,40	0,42	0,45	0,39	0,43	0,18	0,17	0,38
Osen	0,61	0,15	0,60	0,35	0,48	0,36	0,36	0,34	0,38	0,51	0,15	0,21	0,38
Kảrvatn	0,23	0,09	0,44	0,29	0,30	0,24	0,32	0,19	0,23	0,16	0,06	0,09	0,22
Tustervatn	0,55	0,15	0,43	0,24	0,34	0,21	0,44	0,35	0,29	0,12	0,11	0,16	0,28
Jergul	0,69	0,30	0,78	0,26	0,48	0,35	0,21	0,25	0,22	0,11	0,16	0,25	0,34
Svanvik	0,75	0,46	0,87	0,58	0,69	0,54	0,25	0,28	0,28	0,25	0,53	0,29	0,48
Zeppelinfjellet	0,21	0,30	0,36	0,33	0,12	0,08	0,06	0,10	0,04	0,08	0,14	0,19	0,17

Tabell A.3.3: Månedlige og årlige middelkonsentrasjoner av nitrogendioksid i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g}$ N/m³.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	1,29	0,66	1,00	0,24	0,36	0,37	0,45	0,47	0,49	1,16	1,19	0,58	0,68
Søgne	2,10	0,93	1,17	0,57	0,81	0,87	0,85	0,81	0,83	1,58	2,09	1,63	1,19
Skreádalen	0,83	0,40	0,67	0,29	0,33	0,42	0,38	0,36	0,25	0,55	0,58	0,41	0,46
Nordmoen	4,40	3,14	2,00	1,03	0,77	0,83	1,11	1,00	1,04	2,15	3,96	5,53	2,25
Osen	0,86	0,64	0,50	0,25	0,21	0,18	0,15	0,11	0,13	0,64	0,62	0,67	0,41
Kárvatn	0,34	0,17	0,43	0,19	0,10	0,28	0,25	0,18	0,21	0,28	0,28	0,41	0,26
Tustervatn	0,16	0,14	0,30	0,15	0,11	0,20	0,18	0,15	0,14	0,15	0,15	0,08	0,16
Jergul	0,22	0,22	0,28	0,14	0,08	0,18	0,11	0,11	0,15	0,15	0,19	0,18	0,16
Svanvik	0,87	0,58	0,54	0,41	0,33	0,33	0,19	0,27	0,37	0,87	1,19	0,91	0,58

Tabell A.3.4: Månedlige og årlige middelkonsentrasjoner av sum salpetersyre og nitrat i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g} \mathrm{N/m} 3$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,38	0,15	0,39	0,15	0,29	0,26	0,32	0,31	0,25	0,58	0,32	0,15	0,30
Søgne	0,48	0,21	0,61	0,21	0,46	0,36	0,39	0,27	0,30	1,03	0,48	0,26	0,43
Skreadalen	0,20	0,09	0,16	0,19	0,35	0,22	0,31	0,26	0,20	0,32	0,17	0,17	0,22
Prestebakke	0,31	0,24	0,26	0,21	0,31	0,21	0,27	0,27	0,16	0,83	0,37	0,23	0,31
Nordmoen	0,35	0,17	0,23	0,16	0,16	0,21	0,24	0,18	0,13	0,44	0,43	0,48	0,27
Gulsvik	0,22	0,14	0,23	0,13	0,15	0,13	0,14	0,12	0,08	0,22	0,20	0,25	0,17
Osen	0,17	0,12	0,19	0,10	0,11	0,09	0,13	0,14	0,14	0,27	0,16	0,14	0,15
Kárvatn	0,08	0,04	0,12	0,05	0,06	0,11	0,18	0,17	0,08	0,08	0,07	0,10	0,10
Tustervatn	0,09	0,05	0,09	0,05	0,06	0,09	0,13	0,12	0,14	0,07	0,09	0,08	0,09
Jergul	0,12	0,08	0,15	0,06	0,08	0,12	0,20	0,14	0,13	0,06	0,10	0,11	0,11
Svanvik	0,13	0,09	0,14	0,09	0,10	0,09	0,15	0,07	0,06	0,05	0,09	0,07	0,10
Zeppelinfjellet	0,03	0,04	0,04	0,04	0,04	0,07	0,13	0,19	0,16	0,08	0,06	0,09	0,08

Tabell A.3.5: Månedlige og årlige middelkonsentrasjoner av sum ammonium og ammoniakk i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g}$ $\mathrm{N} / \mathrm{m}^{3}$.

| STASJON | JAN | FEB | MAR | APR | MAI | JUN | JUL | AUG | SEP | OKT | NOV | DES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | AR 1

Tabell A.3.6: Månedlige og årlige middelkonsentrasjoner av magnesium i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Nordmoen	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,01	0,02	0,05	0,02	0,01	0,02
Birkenes	0,09	0,13	0,09	0,05	0,02	0,02	0,03	0,02	0,04	0,11	0,04	0,01	0,05

Tabell A.3.7: Månedlige og årlige middelkonsentrasjoner av kalsium i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Nordmoen	0,04	0,04	0,07	0,06	0,07	0,05	0,08	0,08	0,08	0,06	0,06	0,03	0,06
Birkenes	0,04	0,05	0,06	0,08	0,05	0,04	0,06	0,06	0,04	0,05	0,04	0,01	0,05

Tabell A.3.8: Månedlige og årlige middelkonsentrasjoner av kalium i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Nordmoen	0,13	0,05	0,07	0,05	0,04	0,08	0,04	0,05	0,07	0,09	0,09	0,17	0,08
Birkenes	0,06	0,05	0,06	0,03	0,03	0,06	0,06	0,04	0,04	0,07	0,03	0,02	0,05

Tabell A.3.9: Månedlige og årlige middelkonsentrasjoner av klorid i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÀR
Nordmoen	0,18	0,25	0,16	0,14	0,03	0,03	0,03	0,01	0,09	0,27	0,29	0,12	0,13
Birkenes	0,89	1,53	0,72	0,40	0,10	0,13	0,11	0,09	0,40	0,88	0,28	0,07	0,45

Tabell A.3.10: Månedlige og årlige middelkonsentrasjoner av natrium i luft på norske bakgrunnsstasjoner, 1995. Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Nordmoen	0,26	0,26	0,25	0,18	0,10	0,14	0,14	0,08	0,12	0,40	0,19	0,07	0,18
Birkenes	0,75	1,08	0,74	0,38	0,21	0,19	0,27	0,19	0,37	0,89	0,29	0,12	0,45

Tabell A.3.11: Årlige middelkonsentrasjoner av svovel- og nitrogenkomponenter i luft, 1973-1995 på norske bakgrunnsstasjoner. Enheter: $\mu \mathrm{g}$ S/m og $\mu \mathrm{g} \mathrm{N} / \mathrm{m}^{3}$.

* 1 máned mangler
-. 2 eller flere máneder mangler

Stasjon	År	Årlige middelkonsentrasjoner i luft ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		$\mathrm{SO}_{2}-\mathrm{S}$	$\mathrm{SO}_{4}-\mathrm{S}$	$\mathrm{NO}_{2}-\mathrm{N}$	$\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}\right)-\mathrm{N}$	$\left(\mathrm{NH}_{4}+\mathrm{NH}_{3}\right)-\mathrm{N}$
Birkenes	1973		0,8			
	1974		1,1			
	1975		1,1			
	1976		1,3			
	1977		0,9			
	1978	1,7	1,1			
	1979	1,1	1,3			
	1980	1,4	1,4			
	1981	0,8	1,0			
	1982	1,0	1,1			
	1983	0,5	0,9			
	1984	0,7	1,3	1,1*		
	1985	0,7	0,9	0,8		
	1986	0,7	0,8	1,1	0,4	0,7
	1987	0,7	0,8	1,1	0,3	0,7
	1988	0,6	0,8	1,3	0,3	0,6
	1989	0,5	0,7	1,1	0,3	0,6
	1990	0,5	0,8	1,0	0,3	0,8
	1991	0,5	0,9	0,9	0,3	0,8
	1992	0,40	0,65	0,69	0,24	0,53
	1993	0,40	0,59	0,59	0,23	0,55
	1994	0,40	0,65	0,66	0,28	0,63
	1995	0,31	0,58	0,68	0,30	0,54
Søgne	1989	1,0	1,0	3,1	0,5	1,5
	1990	0,9	1,0	2,7	0,5	1,8
	1991	1,1**	1,2**	2,8**	0,5**	1,7**
	1992	0,62*	0,87*	1,54*	0,42*	0,94*
	1993	0,68	0,81	1,80	0,40	0,88
	1994	0,77	0,77	1,62	0,44	0,89
	1995	0,51	0,72	1,19	0,43	0,98
Skreådalen	1975		1,0			
	1976		1,1			
	1977		0,8			
	1978	1,6	1,0			
	1979	1,0	0,9			
	1980	1,3	1,2			
	1981	0,7	0,9			
	1982	0,8	0,9			
	1983	0,5	0,8			
	1984	0,8	1,0	0,7*		
	1985	0,6	0,8	0,5		
	1986	0,8	0,8	0,7		
	1987	0,7	0,7	0,8		
	1988	0,7	0,7	0,8		
	1989	0,4	0,6	0,6	0,3	1,7
	1990	0,5	0,7	0,6	0,2	2,1
	1991	0,5	0,7	0,6	0,2	1,4
	1992	0,32	0,56	0,41	0,19	1,26
	1993	0,39	0,53	0,45	0,21	1,38
	1994	0,32	0,57	0,63	0,24	1,44
	1995	0,22	0,43	0,46	0,22	1,45

Tabell A.3.11, forts.

Stasjon	År	Ârlige middelkonsentrasjoner i luft ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		$\mathrm{SO}_{2}-\mathrm{S}$	$\mathrm{SO}_{4}-\mathrm{S}$	$\mathrm{NO}_{2}-\mathrm{N}$	$\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}\right)-\mathrm{N}$	$\left(\mathrm{NH}_{4}+\mathrm{NH}_{3}\right)-\mathrm{N}$
Valle	1990	0,3	0,6	1,1	0,2	1,0
	1991	0,3	0,6	1,1	0,2	1,0
	1992	0,19	0,46	0,84	0,14	0,89
	1993	0,21	0,48	1,03	0,15	1,03
	$\begin{aligned} & 1994 \\ & 1995 \end{aligned}$	0,19	0,41	1,09*	0,17	0,73
Prestebakke	1986	1,1	1,2	1,5	0,4	0,8
	1987	1,3	1,1	1,8	0,4	0,9
	1988	1,0	1,1	1,7**	0,3**	0,7**
	1989	0,7	0,9	1,5	0,3	0,8
	1990	0,5	0,8	1,3	0,3	0,7
	1991	0,5	0,8	1,4	0,3	0,7
	1992	0,48	0,70	1,02	0,28	0,65
	1993	0,50	0,75	1,20	0,28	0,68
	1994	0,48	0,73	1,03	0,29	0,68
	1995	0,39	0,66		0,31	0,67
Lardal	1990	0,2	0,5	1,0	0,2	0,6
	1991	0,2	0,6	1,0	0,1	0,6
	1992	0,18	0,47	0,58	0,13	0,49
	1993	0,24	0,44	0,71	0,14	0,41
	$\begin{aligned} & 1994 \\ & 1995 \end{aligned}$	0,23	0,44	0,62*	0,17	0,48
Nordmoen	1986	0,5**	0,9**	2,0**	0,3**	0,6**
	1987	0,6	0,8	3,3	0,4	0,7
	1988	0,7	0,9	3,0	0,3	0,6
	1989	0,4	0,8	2,6	0,3	0,7
	1990	0,4	0,7	2,5	0,3	0,7
	1991	0,3	0,8	2,6	0,2	0,6
	1992	0,21	0,56	2,43	0,21	0,53
	1993	0,25	0,59	2,09	0,21	0,54
	1994	0,23	0,58	2,56	0,28	0,62*
	1995	0,19	0,54	2,25	0,27	0,54
Gulsvik	1988	0,5	0,7			
	1989	0,2	0,5			
	1990	0,2	0,5		0,2	
	1991	0,3	0,5			
	1992	0,19	0,42		0,15	
	1993	0,22	0,40		0,15	
	1994	0,19	0,42		0,20	
	1995	0,20	0,38		0,17	
Osen	1988	0,7	0,7			
	1989	0,4	0,5	0,9	0,2	0,4
	1990	0,2	0,5	0,6	0,1	0,4
	1991	0,3	0,5	0,6	0,1	0,4
	1992	0,17	0,37	0,50	0,11	0,30
	1993	0,22	0,38	0,53	0,11	0,28
	1994	0,19	0,42	0,44	0,14	0,34
	1995	0,19	0,38	0,41	0,15	0,31
Nausta	1988	0,3	0,5			
	1989	0,2	0,4			
	1990	0,2	0,4		0,1	
	1991	0,2	0,4			
	1992	0,17	0,39		0,10	
	1993	0,20	0,44		0,13	
	$\begin{aligned} & 1994 \\ & 1995 \\ & \hline \end{aligned}$	0,13	0,38		0,12	

Tabell A.3.11, forts.

Stasjon	År	SO Årlige middelkonsentrasjoner i luft ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		$\mathrm{SO}_{2}-\mathrm{S}$	$\mathrm{SO}_{4}-\mathrm{S}$	$\mathrm{NO}_{2}-\mathrm{N}$	$\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}\right)-\mathrm{N}$	$\left(\mathrm{NH}_{4}+\mathrm{NH}_{3}\right)$ - N
Kårvatn	1979	0,5	0,5			
	1980	0,5	0,5			
	1981	0,5	0,5			
	1982	0,3	0,4			
	1983	0,2	0,4			
	1984	0,4	0,5			
	1985	0,4	0,5			
	1986	0,4	0,4			
	1987	0,3	0,4			
	1988	0,3	0,4	0,6	0,1	0,4
	1989	0,2	0,3	0,3	0,1	0,4
	1990	0,1	0,3	0,4	0,1	0,4
	1991	0,1	0,3	0,3	0,1	0,4
	1992	0,12	0,30	0,19	0,06	0,37
	1993	0,15	0,30	0,16	0,07	0,38
	1994	0,12	0,30	0,22	0,10	0,48
	1995	0,16	0,22	0,26	0,10	0,36
Tustervatn	1979	0,9	0,7			
	1980	0,6	0,7			
	1981	0,7	0,5			
	1982	0,5	0,5			
	1983	0,3	0,5			
	1984	0,7	0,7			
	1985	0,6	0,6			
	1986	0,5	0,4			
	1987	0,7	0,6			
	1988	0,7	0,5			
	1989	0,7	0,2	0,3	0,1	0,5
	1990	0,3	0,4	0,4	0,1	0,5
	1991	0,3	0,4	0,3	0,1	0,7
	1992	0,15	0,28	0,26	0,06	0,54
	1993	0,18	0,31	0,19	0,07	0,66
	1994	0,16	0,29	0,19	0,09	0,71
	1995	0,16	0,28	0,16	0,09	0,62
Jergul	1977		0,6			
	1978	0,9	0,5			
	1979	1,5	0,7			
	1980	1,6	0,7			
	1981	1,3	0,6			
	1982	0,8	0,5			
	1983	0,8	0,7			
	1984	1,2	0,8	0,4**		
	1985	1,4	0,8	0,3		
	1986	1,0	0,7	0,5		
	1987	1,7	0,8	0,5		
	1988	1,2	0,7	0,5	0,1	0,2
	1989	0,4	0,4	0,3	0,1	0,2
	1990	0,8	0,5	0,4	0,1	0,2
	1991	0,8	0,5	0,3	0,1	0,2
	1992	0,53	0,40	0,28	0,07	0,17
	1993	0,58	0,44	0,21	0,08	0,17
	1994	0,44	0,31	0,16	0,09	0,16
	1995	0,59	0,34	0,16	0,11	0,15

Tabell A.3.11, forts.

Stasjon	År	Ârlige middelkonsentrasjoner i luft ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		$\mathrm{SO}_{2}-\mathrm{S}$	$\mathrm{SO}_{4}-\mathrm{S}$	$\mathrm{NO}_{2}-\mathrm{N}$	$\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}\right)-\mathrm{N}$	$\left(\mathrm{NH}_{4}+\mathrm{NH}_{3}\right)$ - N
Svanvik	1987	6,4	0,9	1,0	0,1	0,6
	1988	5,8	0,9	0,9**	0,1**	0,5**
	1989	5,4	0,6	0,7	0,1	0,4
	1990	7,2	0,7	0,8	0,1	0,4
	1991	5,9	0,7	0,8	0,1	0,5
	1992	3,25	0,57	0,76	0,07	0,67
	1993	4,32	0,53	0,57	0,07	0,51
	1994	4,15	0,37	0,56	0,07	0,42
	1995	5,07	0,48	0,58	0,10	0,49
Ny-Ålesund	1980	0,32	0,31			
	1981	0,36	0,23			
	1982	0,31	0,28			
	1983	0,42	0,41			
	1984	0,24	0,34			
	1985	0,36	0,39			
	1986	0,27	0,34			
	1987	0,53	0,40			
	1988	0,32	0,32			
	1989	0,21	0,24			
	1990	0,22	0,27		0,03	
Zeppelin	1990	0,21	0,22		0,04	0,09
	1991	0,24	0,19	0,02**	0,05	0,09
	1992	0,19	0,19	0,02	0,04	0,08
	1993	0,17	0,20	0,03	0,06	0,09
	1994	0,16	0,15	0,05	0,06	0,09
	1995	0,15	0,17		0,08	0,10

Vedlegg A. 5 - Analyseresultater

Tabell A.5.1 Organiske forbindelser luft, Lista (O-223)
Tabell A.5.2 Organiske forbindelser nedbør, Lista (O-224)
Tabell A.5.3 Organiske forbindelser luft, Ny - \AA lesund ($\mathrm{O}-221$)
Tabell A.5.4 Organiske forbindelser luft, Ny - \AA lesund ($\mathrm{O}-229$)
Tabell A.5.5 Tungmetaller og sporelementer luft, Ny - \AA lesund(NILU-U-80/96)

Postboks 100, N-2007 Kjeller

Målerapport nr. O-223

Oppdragsgiver: Statens forurensningstilsyn (SFT)
Postboks 8100 Dep.
0032 OSLO
Prosjekt nr.: O-90006
Prøvetaking:
Sted: Lista fyr
Ansvar: NILU
Kommentar:

Prøveinformasjon:

NILU pravenr.	Kundens provenr.	Provetype	Proven mottatt	Proven analysert
95/41	5-6/1-95	Luft	12.01.95	20.12.95-08.05.96
95/55	12-13/1-95	"	19.01.95	"
95/64	19-20/1-95	"	23.01.95	"
95/99	26-27/1-95	"	30.01.95	"
95/117	2-3/2-95	"	07.02.95	"
95/136	9-10/2-95	"	14.02.95	"
95/156	16-17/2-95	"	20.02.95	"
95/173	23-24/2-95	"	28.02.95	"
95/204	2-3/3-95	"	07.03.95	"
95/240	9-10/3-95	"	14.03.95	"
95/247	16-17/3-95	"	20.03.95	"
95/263	23-24/3-95	"	26.03.95	"
95/276	30-31/3-95	"	31.03.95	"
95/287	6-7/4-95	"	10.04.95	"
95/291	13-14/4-95	"	20.04.95	"
95/316	20-21/4-95	"	27.04.95	"
95/368	29-30/4-95	"	11.05 .95	"
95/381	5-6/5-95	"	11.05 .95	"
95/386	11-12/5-95	"	15.05 .95	"
95/419	18-19/5-95	"	22.05.95	"
95/427	25-26/5-95	"	30.05.95	"
95/440	1-2/6-95	"	07.06.95	"
95/472	8-9/6-95	"	12.06.95	"
95/528	15-16/6-95	"	22.06.95	"
95/547	22-23/6-95	"	29.06.95	"
95/549	29-30/6-95	"	30.06.95	"
95/591	6-7/7-95	"	12.07.95	"
95/644	13-14/7-95	"	17.07 .95	"
95/658	20-21/7-95	"	27.07.95	"
95/671A	27-28/7-95	"	31.07.95	"

NILU prøvenr.	Kundens prøvenr.	Prøvetype	Prøven mottatt	Prøven analysert
$95 / 676$	$3-4 / 8-95$	Luft	09.08 .95	$20.12 .95-08.05 .96$
$95 / 679$	$10-11 / 8-95$	$"$	15.08 .95	$"$
$95 / 731$	$17-18 / 8-95$	$"$	28.08 .95	$"$
$95 / 732$	$24-25 / 8-95$	$"$	28.08 .95	$"$
$95 / 783$	$31 / 8-1 / 9-95$	$"$	12.09 .95	$"$
$95 / 817$	$7-8 / 9-95$	$"$	12.09 .95	$"$
$95 / 839$	$14-15 / 9-95$	$"$	20.09 .95	$"$
$95 / 853$	$21-22 / 9-95$	$"$	26.09 .95	$"$
$95 / 875$	$28-29 / 9-95$	$"$	05.10 .95	$"$
$95 / 886$	$5-6 / 10-95$	$"$	09.10 .95	$"$
$95 / 917 A$	$12-13 / 10-95$	$"$	16.10 .95	$"$
$95 / 931$	$19-20 / 10-95$	$"$	24.10 .95	$"$
$95 / 984$	$26-27 / 10-95$	$"$	03.11 .95	$"$
$95 / 992$	$2-3 / 11-95$	$"$	08.11 .95	$"$
$95 / 1029$	$9-10 / 11-95$	$"$	15.11 .95	$"$
$95 / 1031$	$16-17 / 11-95$	$"$	20.11 .95	$"$
$95 / 1072$	$23-24 / 11-95$	$"$	29.11 .95	$"$
$95 / 1082$	$30 / 11-1 / 12-95$	$"$	04.12 .95	$"$
$95 / 1101$	$7-8 / 12-95$	$"$	11.12 .95	$"$
$95 / 1134$	$15-16 / 12-95$	$"$	20.12 .95	$"$
$96 / 5$	$21-22 / 12-95$	$"$	03.01 .96	$"$
$96 / 6$	$28-29 / 12-95$	$"$	03.01 .96	

Analyser:

Utført av: Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
Målemetode: NILU-O-2 (Bestemmelse av persistente organiske forbindelser (pesticider og PCB'er))
Måleusikkerhet: $\quad \pm 20 \%$
Kommentarer: NLLUs krav til gjenvinning av internstandard er ikke opfylt for HCB i prøvenr. 95/440.

Godkjenning: Kjeller, 14. mai 1996

Ae-Anders Braathen

Ole-Anders Braathen
Leder, Organisk analyse

Vedlegg:	52 analyseresultater: 1 side
	Målerapporten og vedleggene omfatter totalt 3 sider

Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.

> Prøvetype: Luft
> Prøvemengde: 450-500 m^{3}
> Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$

NILU prøvenr.	95/41	95/55	95/64	95/99	95/117	95/136	95/156	95/173	95/204	95/240	95/247	95/263	95/276	95/287
Uke	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Dato	5-6/1-95	12-13/1-95	19-20/1-95	26-27/1-95	2-3/2-95	9-10/2-95	16-17/2-95	23-24/2-95	2-3/3-95	9-10/3-95	16-17/3-95	23-24/3-95	30-31/3-95	6-7/4-95
a-HCH	51,3	50,2	43,8	50,9	68,8	27,2	38,7	41,1	40,0	41,2	47,9	31,2	47,2	38,2
$\mathrm{g}-\mathrm{HCH}$	22,9	49,0	14,2	20,9	20,6	7,4	27,6	18,7	17,5	39,8	45,8	76,7	40,1	25,5
HCB	92,8	99,7	79,8	84,3	83,7	53,2	75,1	82,5	90,8	107,6	100,4	96,8	93,8	92,3
NILU prøvenr.	95/291	95/316	95/368	95/381	95/386	95/419	95/427	95/440	95/472	95/528	95/547	95/549	95/591	95/644
Uke	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Dato	13-14/4-95	20-21/4-95	29-30/4-95	5-6/5-95	11-12/5-95	18-19/5-95	25-26/5-95	1-2/6-95	8-9/6-95	15-16/6-95	22-23/6-95	29-30/6-95	6-77-95	13-14/7-95
a-HCH	39,4	28,1	65,5	59,6	55,7	69,5	61,8	53,4	65,4	47,2	60,3	41,5	45,1	57,0
g-HCH	31,5	24,0	27,5	365,4	34,0	25,7	135,3	109,8	120,5	72,4	46,9	23,2	62,6	65,7
HCB	90,1	78,7	93,7	120,2	86,1	116,8	100,0	107,6 (g)	108,2	89,9	99,8	97,8	122,1	89,6
NILU prøvenr.	95/658	95/671A	95/676	95/679	95/731	95/732	95/783	95/817	95/839	95/853	95/875	95/886	95/917A	95/931
Uke	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Dato	20-21/7-95	27-28/7-95	3-4/8-95	10-11/8-95	17-18/8-95	24-25/8-95	31-1/9-95	7-8/9-95	14-15/9-95	21-22/9-95	28-29/9-95	5-6/10-95	12-13/10-95	19-20/10-95
$\mathrm{a}-\mathrm{HCH}$	72,7	77,2	40,4	46,1	86,3	63,7	28,48	99,8	79,2	49,6	36,9	52,2	52,8	42,5
g-HCH	95,2	72,0	50,4	30,5	72,5	41,7	17,8	153,0	77,8	17,8	10,3	119,6	209,5	20,8
HCB	89,0	102,3	103,1	94,1	86,7	98,8	82,7	137,5	149,7	73,0	77,4	103,6	124,1	108,1
NILU prøvenr.	95/984	95/992	95/1029	95/1031	95/1072	95/1082	95/1101	95/1134	96/5	96/6				
Uke	43	44	45	46	47	48	49	50	51	52				
Dato	26-27/10-95	2-3/11-95	9-10/11-95	16-17/11-95	23-24/11-95	30-1/12-95	7-8/12-95	15-16/12-95	21-22/12-95	28-29/12-95				
$\mathrm{a}-\mathrm{HCH}$	45,7	40,3	36,2	53,5	57,8	59,3	72,4	44,5	50,4	42,1				
$\mathrm{g}-\mathrm{HCH}$	593,5	14,6	17,7	12,7	86,9	28,0	19,2	18,9	15,3	12,1				
HCB	135,9	87,1	85,9	86,1	87,8	89,2	92,6	74,4	73,1	75,1				

(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.
(g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
,

Akkreditert etter EN 45001
Norsk institutt for luftforskning Postboks 100, \mathbf{N}-2007 Kjeller

Målerapport nr. O-224

Oppdragsgiver: Statens forurensningstilsyn (SFT)
Postboks 8100 Dep
0032 OSLO
Prosjekt nr.: O-90006
Prøvetaking:
Sted:
Ansvar:
Lista fyr
Kommentar:

Prøveinformasjon:

NILU provenr.	Kundens provenr.	Provetype	Proven mottatt	Proven analysert
95/51	9-12/1-95	Nedbør	16.01.95	20.12.95-08.05.96
95/59	12-16/1-95	*	19.01.95	*
95/65	16-18/1-95	"	23.01.95	"
95/66	18-20/1-95	"		"
95/97	20-22/1-95	"	26.01.95	"
95/108	22-30/1-95	"	02.02 .95	"
95/111	30-31/1-95	"	04.02.95	"
95/112	31-1/2-95	"	-	"
95/153	6-12/2-95	"	16.02.95	"
95/151	13-14/2-95	"		"
95/162	15-20/2-95	"	23.02 .95	"
95/168	20-21/2-95	"	24.02.95	"
95/200	27-1/3-95	"	03.03.95	"
95/225	6-7/3-95	"	09.03.95	"
95/257	13-17/3-95	"	23.03.95	"
95/267	20-25/3-95	"	27.03.95	"
95/277	27-1/4-95	"	04.04.95	"
95/288	3-7/4-95	"	11.04 .95	"
95/290	10-17/4-95	"	20.04.95	"
95/382	1-8/5-95	"	11.05 .95	"
95/404	8-15/5-95	"	18.05.95	"
95/425	15-22/5-95	"	26.05.95	"
95/428	22-27/5-95	"	30.05.95	"
95/441	29-1/6-95	"	07.06.95	"
95/503	5-11/6-95	"	15.06.95	"
95/519	12-16/6-95	"	19.06.95	"
95/529	16-19/6-95	"	22.06 .95	"
95/585	3-7/-95	"	11.07 .95	"
95/590	7-10/7-95	"	12.07 .95	"
95/648	10-17/7-95	"	19.07.95	"

$95 / 653$	$17-21 / 7-95$	Nedbør	24.07 .95	$20.12 .95-08.05 .96$
$95 / 804$	$1-4 / 9-95$	$"$	06.09 .95	$"$
$95 / 809$	$4-6 / 9-95$	$"$	08.09 .95	$"$
$95 / 833$	$11-14 / 9-95$	$"$	18.09 .95	$"$
$95 / 842$	$14-18 / 9-95$	$"$	21.09 .95	$"$
$95 / 859$	$18-25 / 9-95$	$"$	28.09 .95	$"$
$95 / 862$	$25-27 / 9-95$	$"$	02.10 .95	$"$
$95 / 882$	$2-5 / 10-95$	$"$	09.10 .95	$"$
$95 / 934$	$16-19 / 10-95$	$"$	27.10 .95	$"$
$95 / 935$	$19-23 / 10-95$	$"$	$"$	$"$
$95 / 973$	$23-30 / 10-95$	$"$	02.11 .95	$"$
$95 / 974$	$30-31 / 10-95$	$"$	4	$"$
$95 / 1030$	$6-13 / 11-95$	$"$	15.11 .95	$"$
$95 / 1048$	$20-23 / 11-95$	$"$	17.11 .95	$"$
$95 / 1079$	$23-24 / 11-95$	$"$	30.11 .95	$"$
$95 / 1128$	$4-9 / 12-95$	$"$	13.12 .95	

Analyser:

Utført av:
Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER

Målemetode: NLLU-O-2 (Bestemmelse av persistente organiske forbindelser (pesticider og PCB'er))
Måleusikkerhet: $\pm 20 \%$
Kommentarer: NLLUs krav til gjenvinning av internstandard er ikke oppfylt for HCB i prøvenr. 95/108, 95/151, 95/225, 95/290, 95/404, 95/529 og 95/590 og heller ikke for $\alpha-$ og γ-HCH i prøvenr. 95/529.

Godkjenning: Kjeller, 14. mai 1996
Ole-Anders Braathen
Ole-Anders Braathen
Leder, Organisk analyse

Vedlegg: $\quad 46$ analyseresultater: 2 sider
Målerapporten og vedleggene omfatter totalt 4 sider
Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.
POP-Analyseresultater
Vedlegg til målerapport: O-223
Prosjekt: CAMP '95
Prøvetakingssted: Lista fyr

NILU prøvenr.		95/51	95/59	95/65	95/66	95/97	95/108	95/111	95/112	95/153	95/151	95/162	95/168	95/200
Uke	1	2	2b	3	3b	3c	4	5	5b	6	7	7b	8	9
Dato		9-121-95	12-16/1-95	16-18/1-95	18-20/1-95	20-221-95	22-30/1-95	30-31/1-95	31-1/2-95	6-12/2-95	13-14/2-95	15-20/2-95	20-21/2-95	27-1/3-95
a-HCH		1,73	1,76	2,09	2,88	2,67	2,78	2,48	2,26	2,52	1,74	1,68	1,96	1,97
$\mathrm{g}-\mathrm{HCH}$		1,23	1,50	5,15	4,82	2,66	1,60	0,66	1,53	2,07	4,39	1,80	1,35	1,45
HCB		0,50 (b,i)	0,88 (b,i)	0,61 (b,i)	0,38 (b,i)	0,71 (b,i)	0,80 (b,i,g)	0,41 (b,i)	0,73 (b,i)	0,85 (b,i)	1,30 (b,i,g)	1,85 (b)	1,67 (b)	1,82 (b)
NILU prøvenr.	95/225	95/257	95/267	95/277	95/288	95/290			95/382	95/404	95/425	95/428	95/441	95/503
Uke	10	11	12	13	14	15	16	17	18	19	- 20	21	22	23
Dato	6-7/3-95	13-17/3-95	20-25/3-95	27-1/4-95	3-7/4-95	10-17/4-95			1-8/5-95	8-15/5-95	15-22/5-95	22-27/5-95	29-1/6-95	5-11/6-95
a-HCH	1,49	2,38	2,28	1,95	2,19	1,71			2,33	2,27	1,19	2,98	1,97	1,42
$\mathrm{g}-\mathrm{HCH}$	3,92	2,17	3,16	4,14	1,94	4,79			24,01	3,78	1,85	15,06	60,46	8,26
HCB	0,91 (b,g)	0,41 (b,i)	0,26 (b)	0,99 (b)	0,82 (b,i)	1,08 (b,i,g)			0,54 (b,i)	1,26 (b,g)	0,64 (b,i)	1,72 (b)	0,97 (b,i)	0,70 (b)
NILU prøvenr.	95/519	95/529	95/585	95/590	95/648	95/653						95/804	95/809	95/833
Uke	24	25	26	27	28	29	30	31	32	33	34	35	36	37
Dato	12-16/6-95	16-1916-95	3-77-95	7-10/7-95	10-17/7-95	17-21/7-95						1-4/9-95	4-6/9-95	11-14/9-95
$\mathrm{a}-\mathrm{HCH}$	1,93	1,98 (g)	1,26	1,54	1,22	1,30						2,65	2,30	1,44
g- HCH	7,36	3,63 (g)	3,04	3,12	10,57	3,32						2,14	2,40	5,79
HCB	0,90 (b,i)	0,59 (b,i,g)	0,48 (b)	0,50 (b,i,g)	2,35 (b)	0,49 (b)						1,12 (b)	0,60 (b)	1,01 (b)
NILU prøvenr.	95/842	95/859	95/862	95/882		95/934	95/935	95/973	95/974	95/1030		95/1048	95/1079	
Uke	37 b	38	39	40	41	42	43	43b	44	45	46	47	47b	48
Dato	14-18/9-95	18-25/9-95	25-27/9-95	2-5/10-95		16-19/10-95	19-23/10-95	23-30/10-95	30-31/10-95	6-13/11-95		20-23/11-95	23-24/11-95	
a-HCH	1,75	1,47	1,97	1,57		1,44	1,36	3,41	1,82	1,55		1,85	1,48	
$\mathrm{g}-\mathrm{HCH}$	3,35	3,67	1,56	14,02		7,25	6,87	14,91	8,89	3,53		2,70	2,45	
HCB	0,81 (b)	0,42 (b)	0,40 (b)	0,72 (b)		0,08 (b,i)	0,12 (b)	0,75 (b)	0,14 (b)	0,15 (b)		0,17 (b)	0,14 (b)	

(b): Mindre enn $10 x$ blindverdi.
(g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
Prøvetype: Vann
Prøvemengde: $0,5-11$
Måleenhet: $n g / 1$

(b): Mindre enn $10 \times$ blindverdi.
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.
(g): Gjenvinning av internstandard oppfyller ikke NILUs krav.

Målerapport nr. O-221

Oppdragsgiver: Statens forurensningstilsyn (SFT)
Postboks 8100 Dep
0032 OSLO
Prosjekt nr.: O-93062

Prøvetaking:

Sted:
Ansvar:
Zeppelinfjellet, Ny -Ålesund
Kommentar:
NILU/NP

Prøveinformasjon: Det er målt klororganiske komponenter (pesticider og PCB) i 52 ukesprøver fra 1995.

NILU provenr.	Kundens prøvenr.	Provetype	Prøven mottatt	Prøven analysert
95/86	4-6/1-95	Luft	26.01.95	01.03.-08.05.96
95/87	11-13/1-95	"		"
95/178	18-20/1-95	"	28.01.95	"
95/174	25-27/1-95	"	"	"
95/175	1-3/2-95	"	"	"
95/176	8-10/2-95	"	"	"
95/177	15-17/2-95	"	"	"
95/295	22-24/2-95	"	24.04.95	"
95/297	1-3/3-95	"	"	"
95/299	8-10/3-95	"	"	"
95/301	15-17/3-95	"	"	"
95/303	22-24/3-95	"	"	"
95/305	29-31-3-95	"	"	"
95/307	5-7/4-95	"	"	"
95/391	12-14/4-95	"	16.05.95	"
95/393	19-21/4-95	"	"	"
95/395	27-29/4-95	"	"	"
95/397	3-5/5-95	"	"	"
95/489	10-12/5-95	"	15.06.95	"
95/491	17-19/5-95	"	"	"
95/493	24-26/5-95	"	"	"
95/600	31-2/6-95	"	17.07 .95	"
95/608	8-9/6-95	"	"	"
95/604	14-16/6-95	"	"	"
95/601	21-23/6-95	"	"	"
95/669	28-30/6-95	"	31.07 .95	"

NILU prøvenr.	Kundens provenr.	Prøvetype	Prøven mottatt	Proven analysert
95/670	5-7/7-95	Luft	31.07 .95	01.03.-08.05.96
95/691	12-14/7-95	"	18.08.95	"
95/690	19-21/7-95	"	"	"
95/692	26-28/7-95	"	"	"
95/689	2-4/8-95	"	"	"
95/887	9-11/8-95	"	10.10 .95	"
95/901	16-18/8-95	"	12.10.95	"
95/902	23-25/8-95	"	"	"
95/903	30-1/9-95	"	"	"
95/904	6-8/9-95	"	"	"
95/890	13-15/9-95	"	10.10.95	"
95/906	20-22/9-95	"	12.10.95	"
95/893	27-29/9-95	"	10.10.95	"
95/1105	4-6/10-95	"	12.12.95	"
95/1106	11-13/10-95	"	"	"
95/1107	18-20/10-95	"	"	"
95/1108	25-27/10-95	"	"	"
95/1109	1-3/11-95	"	"	"
95/1110	8-10/11-95	"	"	"
95/1111	15-17/11-95	"	"	"
95/1112	22-24/11-95	"	"	"
95/1113	29-1/12-95	"	"	"
96/92	6-8/12-95	"	01.02.96	"
96/93	13-15/12-95	"		"
96/94	20-22/12-95	"	"	"
96/95	27-29/12-95	"	"	"

Analyser:

Utført av: Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
Målemetode: NILU-O-2 (Bestemmelse av persistente organiske forbindelser (pesticider og PCB'er))
Måleusikkerhet: $\quad \pm 20 \%$
Kommentarer: Følgende komponenter rapporteres for luft fra Zeppelinstasjonen, Ny -Ålesund:

10 PCB-kongenerer (PCB-28, -31, -52, -101, -105, -118, 138, $-153,-156$ og -180).
Heksaklorsykloheksan ($\alpha-\operatorname{og} \gamma$-isomer).
Klordaner (trans- og cis-klordan og trans-og cis-nonaklor).
Heksaklorbenzen.
DDT-komponenter (o,p-DDD, p,p-DDD, o,p-DDE, p,p-DDE og o,p-DDT, p,p-DDT).

Komment. forts.: PCB- og DDT-forbindelsene er identifisert og kvantifisert ved hjelp av gasskromatografi og høyoppløselig massespektrometri, mens for de andre pesticidene har det vært brukt gasskromatografi og lavoppløselig massespektrometri med negativ kjemisk ionisasjon. Vi har valgt å inkludere sum DDT i resultatskjemaene. På grunn av noe dekomponering av DDT under den gasskromatografiske analysen til henholdsvis DDD og DDE, vil tallene for de enkelte DDT-komponenter være usikre. Dette medfører at konsentrasjonen av DDT vil være noe for lav, mens DDD- og DDE-konsentrasjonene vil være noe for høye. Summen av konsentrasjonene av DDT-komponentene vil derfor være mest hensiktsmessig å bruke i denne sammenheng.

I tilfeller der enkeltresultater ikke oppfyller bestemte kvalitetskriterier er dette kommentert ved en anmerkning og kommentar i resultattabellene.

Godkjenning: Kjeller, 18. juni 1996

Ole-Anders Boaathin

Ole-Anders Braathen
Leder, Organisk analyse
$\begin{array}{ll}\text { Vedlegg: } & 52 \text { analyseresultater: } 12 \text { sider } \\ & \text { Målerapporten og vedleggene omfatter totalt } 15 \text { sider }\end{array}$
Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.

NILU-Prøvenummer	95/86	95/87	95/178	95/174	95/175	95/176	95/177	95/295	95/297	95/299
Ukenr.	1	2	3	4	5	6	7	8	9	10
. Prøvemerking	4-6/1-95	11-13/1-95	18-20/1-95	25-27/1-95	1-3/2-95	8-10/2-95	15-17/2-95	22-24/2-95	1-3/3-95	8-10/3-95
Prøvemengde (m^{3})	1126,9	1115	1140	1141,7	1159,9	1050,5	1154,4	1149,2	1172	1147,2
Datafiler	zep958.D	2EP9587.D	ZEP95178.D	ZEP95174	ZEP95175	ZEP95176	ZEP95177	ZEP95295	ZEP95297	ZEP95299
$\alpha-\mathrm{HCH}$	93,1	96,9	48,4	52,0	63,6	89,1	70,6	53,1	43,6	57,3
γ - HCH	16,3	11,5	9,36	5,98	7,88	13,7	12,3	15,4	10,1	10,7
tr-CD	0,63	0,77	1,31	0,35	0,29 (b)	0,57	0,70	0,70	0,43	0,85
cis-CD	0,94	1,21	1,82	0,55	0,45 (b)	0,80	0,96	0,90	0,61	1,26
tr-No	0,61	0,87	1,31	0,38	0,29	0,57	0,68	0,60	0,40	0,92
cis-No	0,05 (b)	0,08 (b)	0,55	0,04 (b)	0,06 (b)	0,09 (b)	0,06 (b)	0,10 (b)	0,04 (b)	0,08 (b)
o,p'-DDE	0,79	0,81	0,81	0,29	0,56	0,63	0,72	0,50	0,41	0,55
p,p'-DDE	2,24	1,76	2,47	0,83	1,05	2,03	2,41	3,00	2,14	2,36
o, p^{\prime}-DDD	0,08 (b)	0,05 (b)	0,15 (b)	<0,07	0,06 (b)	<0,06	0,05 (b)	0,12 (b)	<0,10	$<0,17$
p, ${ }^{\prime}$ '-DDD	0,09 (b)	<0,03	0,10 (b)	<0,10	0,07 (b,i)	<0,10	0,04 (b)	0,05 (b)	<0,16	<0,29
o,p'-DDT	1,64	1,04	1,67	0,50	0,58	0,67	0,91	0,90	1,35	1,85 (i)
p, p^{\prime}-DDT	1,15	0,40 (b)	0,94 (b)	0,42 (b)	0,59 (b)	0,38 (b)	0,46 (b)	0,60 (b)	0,69 (b)	0,71 (b)
Sum DDT	5,99	4,06	6,14	2,03	2,90	3,71	4,60	5,17	4,60	5,47

NILU-Prøvenummer	95/301	95/303	95/305	95/307	95/391	95/393	95/395	95/397	95/489	95/491
Ukenr.	11	12	13	14	15	16	17	18	19	20
Prøvemerking	15-17/3-95	22-24/3-95	29-31-3-95	5-7/4-95	12-14/4-95	1-21/4-95	27-29/4-95	3-5/5-95	10-12/5-95	17-19/5-95
Prøvemengde (m^{3})	1156,8	1245,6	1162,2	1129,3	1182,5	1149,6	1140	1148,4	1119	1159
Datafiler	ZEP95301	ZEP95303	ZEP95305	ZEP95307	ZEP95391	ZEP95393	2EP95395	ZEP95397	ZEP95489	ZEP95491
$\alpha-\mathrm{HCH}$	62,0	60,4	80,8	33,2	52,8	86,8	72,6	67,3	50,8	49,0
γ - HCH	10,5	8,95	18,1	7,93	14,4	21,4	27,7	11,2	13,5	19,0
tr-CD	0,42	0,40	0,34	0,27 (b)	0,93	0,49	0,70	0,22 (b)	0,22 (b)	0,42
cis-CD	0,61	0,61	0,54	0,43 (b)	1,59	1,00	1,43	1,12	0,86	1,13
tr-No	0,43	0,47	0,41	0,34	1,23	0,82	1,18	0,75	0,67	1,00
cis-No	0,06 (b)	0,05 (b)	0,07 (b)	0,05 (b)	0,17	0,08 (b)	0,10 (b)	0,26	0,18	0,14
o,p'-DDE	0,32	0,27	0,30 (g)	0,17(b,g)	0,44	0,14 (b)	0,22 (b)	0,03 (b,i)	0,47	0,09 (b)
p,p'-DDE	1,52	0,85	1,15 (g)	0,57 (g)	2,32	0,26 (b)	0,79	0,15 (b,i)	2,45	0,52
o, ${ }^{\prime}$-DDD	0,05 (b)	0,03 (b)	0,06 (b,g)	0,05 (b,i,g)	0,07 (b)	0,04 (b,i)	0,04 (b)	<0,04	0,08 (b)	0,04 (b)
p,p'-DDD	0,02 (b)	0,03 (b)	<0,07	<0,10	0,03 (b)	<0,04	0,03 (b)	<0,06	0,03 (b,i)	0,03 (b,i)
o, ${ }^{\prime}$-DDT	0,58	0,43 (b)	0,75 (g)	0,38 (b,g)	1,09	0,43 (b)	0,40 (b,i)	0,13 (b)	1,15	0,46 (b)
p,p'-DDT	0,32 (b)	0,22 (b,i)	0,39 (b,g)	0,23 (b,g)	0,43 (b)	0,18 (b)	0,29 (b)	0,08 (b)	0,46 (b)	0,30 (b)
Sum DDT	2,81	1,83	2,65	1,39	4,38	1,04	1,76	0,39	4,65	1,44

Pesticid-Analyseresultater

Vedlegg til målerapport nr.: O-221
Prøvetakingssted: Zeppelinfjellet, Ny-Ålesund Prøvetype: Luft
Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$

NILU-Prøvenummer	95/493	95/600	95/608	95/604	95/601	95/669	95/670	95/691	95/690	95/692
Ukenr.	21	22	23	24	25	26	27	28	29	30
Prøvemerking	24-26/5-95	31-2/6-95	8-9/6-95	14-16/6-95	21-23/6-95	28-30/6-95	5-7/7-95	12-14/7-95	19-21/7-95	26-28/7-95
Prøvemengde (m^{3})	1147	1157,5	578,4	1148,4	1148,6	1161,6	1135,5	1109,6	1145,2	1173,5
Datafiler	ZEP95493	ZEP95600	ZEP95608	ZEP95604	ZEP95601	ZEP95669	ZEP95670	ZEP95691	ZEP95690	ZEP95692
α - HCH	49,6	70,0	97,1	47,3	29,0	36,7	50,3	51,5	53,1	36,1
γ - HCH	13,3	25,1	41,1	9,50	9,28	6,75	10,6	10,3	7,06	6,80
tr-CD	0,26 (b)	0,16 (b)	0,38	0,15 (b)	0,27 (b)	0,26 (b)	0,17 (b)	0,15 (b)	0,24 (b)	0,24 (b)
cis-CD	0,78	0,66	1,32	0,62	0,96	0,83	0,84	0,69	0,86	0,84
tr-No	0,64	0,51	0,99	0,44	0,67	0,68	0,59	0,47	0,64	0,61
cis-No	0,13	0,11 (b)	0,21	0,13 (b)	0,22	0,21	0,17	0,17	0,2	0,19
o,p'-DDE	0,05 (b)	0,03 (b)	0,16 (b)	0,04 (b)	0,05 (b)	0,04 (b,i)	$0,03(\mathrm{~b}, \mathrm{i})$	0,03 (b,i)	0,05 (b,i)	0,05 (b)
p, p^{\prime}-DDE	0,34 (b)	0,16 (b)	0,42	0,23 (b)	0,27 (b)	0,15 (b,i)	$0,14(\mathrm{~b}, \mathrm{i})$	0,09 (b)	0,15 (b)	0,22 (b)
o, p^{\prime}-DDD	0,03 (b)	0,02 (b)	0,06 (b)	<0,02	<0,12	0,02 (b,i)	<0,03	<0,03	0,01 (b)	0,02 (b,i)
p, ${ }^{\prime}$ - ${ }^{\text {dDD }}$	0,06 (b)	<0,02	<0,05	<0,03	0,11 (b,i)	0,01 (b,i)	0,06 (b,i)	<0,05	0,01 (b,i)	<0,01
o, ${ }^{\prime}$-DDT	0,23 (b)	0,07(b,i)	0,30 (b)	0,08 (b,i)	0,43 (b,i)	0,13 (b,i)	0,17 (b,i)	0,09 (b)	0,08 (b,i)	0,12 (b,i)
p,p'-DDT	0,15 (b,i)	0,05 (b)	0,21 (b,i)	<0,10	0,41 (b)	0,11 (b,i)	$0,14(\mathrm{~b}, \mathrm{i})$	0,19 (b,i)	0,07 (b,i)	0,09 (b)
Sum DDT	0,85	0,33	1,15	0,35	1,28	0,46	0,54	0,39	0,37	0,50

$$
\text { (b): Lavere enn } 5 \times \text { blindverdi. }
$$

(i): Isotopfortold avviker mer enn 20% fra teoretisk verdi.
Det skyldes mulig interferanse eller instrument stgy.
(g): Gjenvinning av intersstandard oppfyller ikke NLLUs krav. <: Lavere enn deteksjonsgrensen.
Vedlegg til målerapport nr.: O-221 Prosjekt: O-93062 Prøvetakingssted: Zeppelinfjellet, Ny -Ålesund Prøvetype: Luft
Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$

NILU-Prøvenummer	95/689	95/887	95/901	95/902	95/903	95/904	95/890	95/906	95/893	95/1105
Ukenr.	31	32	33	34	35	36	37	38	39	40
Prøvemerking	2-4/8-95	9-11/8-95	16-18/8-95	23-25/8-95	30-1/9-95	6-8/9-95	13-15/9-95	20-22/9-95	27-29/9-95	4-6/10-95
Prøvemengde (m^{3})	1163	1149,6	1178,5	1171,3	1188,2	928,5	1113,3	1158,5	1149,5	1161,6
Datafiler	ZEP95689	ZEP95887	ZEP95901	ZEP95902	ZEP95903	ZEP95904	ZEP95890	ZEP95906	ZEP95893	ZEP951105
$\alpha-\mathrm{HCH}$	76,1	61,7	59,3	57,0	67,1	55,2	51,3 (g)	31,5	61,1 (g)	41,3
$\gamma-\mathrm{HCH}$	12,9	8,59	25,0	8,16	11,6	8,31	7,88 (g)	7,35	10,6 (g)	9,80
tr-CD	0,51	0,14 (b)	0,33	0,18 (b)	0,17 (b)	0,24 (b)	0,26 (b,g)	0,31	0,36 (g)	0,27
cis-CD	1,29	0,94	1,18	0,95	1,08	1,17	1,04 (g)	0,97	1,07(g)	0,76
tr-No	1,04	0,57	0,72	0,61	0,63	0,72	0,64 (g)	0,63	0,70 (g)	0,47
cis-No	0,17	0,22	0,25	0,23	0,22	0,22	0,19 (g)	0,23	0,19 (g)	0,13
o,p'-DDE	0,08 (b)	0,02 (b,i)	0,15 (b)	0,02 (b)	0,04 (b)	0,02 (b)	0,06 (b,i)	0,04 (b)	0,06 (b,i)	0,10 (b,i)
p,p'-DDE	0,34 (b)	0,15 (b,i)	0,59	0,10 (b)	0,12 (b)	0,11 (b)	0,22 (b)	0,18 (b)	0,34 (b,i)	1,01 (b)
o,p'-DDD	0,03 (b,i)	0,01 (b)	0,11 (b)	0,01 (b)	0,02 (b)	0,02 (b)	0,03 (b,i)	0,04 (b,i)	0,02 (b)	0,05 (b)
p, p^{\prime}-DDD	0,02 (b,i)	0,05 (b,i)	0,09 (b)	0,01 (b,i)	0,02 (b)	0,04 (b,i)	0,03 (b)	0,03 (b)	0,05 (b,i)	<0,04
o,p'-DDT	0,27 (b)	0,11 (b, i)	0,77	0,09 (b)	0,19 (b)	0,13 (b)	0,20 (b)	0,18 (b)	0,15 (b,i)	0,15 (b)
p,p'-DDT	0,17 (b)	0,12 (b,i)	0,42 (b)	0,06 (b)	0,11 (b)	0,14 (b,i)	0,11 (b)	0,09 (b)	0,14 (b,i)	0,19 (b)
Sum DDT	0,92	0,44	2,13	0,29	0,50	0,46	0,65	0,56	0,76	1,50

NLLU-Prøvenummer	95/1106	95/1107	95/1108	95/1109	95/1110	95/1111	95/1112	95/1113	96/92	96/93
Ukenr.	41	42	43	44	45	46	47	48	49	50
Prøvemerking	11-13/10-95	18-20/10-95	25-27/10-95	1-3/11-95	8-10/11-95	15-17/11-95	22-24/11-95	29-1/12-95	6-8/12-95	13-15/12-95
Prøvemengde (m^{3})	1215	1144,8	1154,4	1142,4	1192,8	1156,8	1156,8	1161,6	1101,7	955,7
Datafiler	ZEP951106	ZEP951107.D	zEP951108	ZEP951109	ZEP951110	zEP951111	zEP951112	ZEP951113	ZEP9692	ZEP9693
$\alpha-\mathrm{HCH}$	61,4	67,3	69,9	65,9	67,1	70,4	75,7	89,0	81,2	83,6
γ - HCH	13,8	11,7	15,3	15,8	16,9	14,3	14,4	16,1	13,8	12,5
tr-CD	0,35	0,37	0,06	0,45	0,60	0,45	0,42	0,93	0,71	0,41
cis-CD	1,16	1,14	0,99	1,02	1,40	0,89	0,75	1,59	1,12	0,65
tr-No	0,70	0,69	0,59	0,68	1,01	0,62	0,51	1,07	0,79	0,43
cis-No	0,14	0,13	0,13	0,10 (b)	0,22	0,09 (b)	0,08 (b)	0,16	0,09 (b)	0,06 (b)
o,p'-DDE	0,13 (b)	0,11 (b,g)	0,11 (b,g)	0,13 (b)	0,16 (b)	0,19 (b)	0,14 (b)	0,25 (b)	0,21 (b)	0,15 (b)
p,p'-DDE	0,66	0,38(b,g)	0,44 (g)	0,61	1,10	0,65	0,84	1,20	1,06	0,73
o,p'-DDD	0,03 (b,i)	0,02 (b,i,g)	0,08 (b,i,g)	0,04 (b,i)	0,04 (b)	<0,07	0,04 (b,i)	0,08 (b)	0,06 (b)	0,09 (b,i)
p, p'-DDD	0,02 (b)	<0,02	0,08 (b,i,g)	0,02 (b,i)	0,04 (b)	<0,11	0,08 (b)	0,03 (b)	0,03 (b,i)	0,10 (b,i)
o,p'-DDT	0,38	0,36 (b,g)	0,28(b,g)	0,44	0,16 (b)	0,36 (b,i)	0,90	0,28 (b)	0,58	0,40 (i)
p,p'-DDT	0,22 (b)	0,09 (b,g)	0,15 (b,g)	0,19 (b)	0,14 (b)	0,30 (b)	0,99 (b)	<0,24	0,32 (b)	0,54 (b)
Sum DDT	1,44	0,96	1,14	1,43	1,64	1,50	2,99	1,84	2,26	2,01

[^1]Maleenhet. pg

NILU-Prøvenummer	$96 / 94$	$96 / 95$							
Ukenr.	51	52							
Prøvemerking	$20-22 / 12-95$	$27-29 / 12-95$							
Prøvemengde $\left(\mathrm{m}^{3}\right)$	1168,8	1132,8							
Datafiler	zEP9694.D	zEP9695.D							
$\alpha-H C H$	75,0	103							
γ-HCH	10,2	12,2							
tr-CD	0,43	0,49							
cis-CD	0,69	0,82							
tr-No	0,48	0,53							
cis-No	$0,07(b)$	$0,06(b)$							
o,p'-DDE	$0,19(b)$	$0,19(b)$							
p,p'-DDE	0,59	0,80							
o,p'-DDD	$0,05(b, \mathbf{b})$	$0,04(b)$							
p,p'-DDD	0,10	$0,06(b, i)$							
o,p'-DDT	0,68	$0,28(b)$							
p,p'-DDT	$0,60(b)$	$0,14(b, i)$							
Sum DDT	2,21	1,51							

(b): Lavere enn $5 \times$ blindverdi.
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.
Det skyldes mulig interferanse eller instrument støy. (g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
<: Lavere enn deteksjonsgrensen.
Side 6 av 6
144
NILU, Kjeller 15.05.96

NILU-Prøvenummer	$95 / 86$	$95 / 87$	$95 / 178$	$95 / 174$	$95 / 175$	$95 / 176$	$95 / 177$	$95 / 295$	$95 / 297$	$95 / 299$
Ukenr.	1	2	3	4	5	6	7	8	9	10
Prøvemerking	$4-6 / 1-95$	$11-13 / 1-95$	$18-20 / 1-95$	$25-27 / 1-95$	$1-3 / 2-95$	$8-10 / 2-95$	$15-17 / 2-95$	$22-24 / 2-95$	$1-3 / 3-95$	$8-10 / 3-95$
Prøvemengde $\left(\mathrm{m}^{3}\right)$	1126,9	1115	1140	1141,7	1159,9	1050,5	1154,4	1149,2	1172	1147,2
Datafiler	DD576191	DD772041	DD576181	DD576131	DD576051	DD576091	DD576231	DD576141	DD576151	DD576061
HCB	107	104	81,4	80,2	91,9	108	86,6	137	95,8	84,7
PCB-28(+16)	12,4	10,2	10,6	5,30	11,7	21,4	20,5	146	32,4	17,1
PCB-31	11,0	9,12	8,77	4,80	10,7	19,2	17,9	130	28,7	15,4
PCB-52	3,06	3,07	3,57	1,19 (b)	2,24	4,53	4,77	23,7	6,56	4,80
PCB-101	0,81	0,86	2,17	0,29 (b)	0,45	0,89	1,10	2,70	1,01	1,11
PCB-105	0,09 (b)	0,07 (b)	0,39	0,03 (b)	0,05 (b)	0,08 (b)	0,13	0,20	0,08 (b)	0,08 (b)
PCB-118	0,35	0,27 (b)	0,51	0,13 (b)	0,18 (b)	0,33	0,47	0,80	0,34	0,38
PCB-138	0,33	0,29 (b)	0,82	0,15 (b)	0,19 (b)	0,27 (b)	0,46	0,70	0,26 (b)	0,29 (b)
PCB-153	0,37	0,35 (b)	0,72	0,16 (b)	0,21 (b)	0,35	0,54	0,70	0,34	0,42
PCB-156	0,02 (b)	0,02 (b)	0,15	0,01 (b)	0,02 (b)	0,02 (b)	0,03 (b,i)	0,02 (b)	0,01 (b)	0,01 (b)
PCB-180	0,08 (b)	0,07 (b)	0,16	0,04 (b)	0,05 (b)	0,07 (b)	0,14	0,10 (b)	0,05 (b)	0,05 (b)

[^2]HCB og PCB-Analyseresultater

HCB og PCB-Analyseresultater

NILU-Prøvenummer	95/301	95/303	95/305	95/307	95/391	95/393	95/395	95/397	95/489	95/491
Ukenr.	11	12	13	14	15	16	17	18	19	20
Prøvemerking	15-17/3-95	22-24/3-95	29-31/3-95	5-7/4-95	12-14/4-95	19-21/4-95	27-29/4-95	3-5/5-95	10-12/5-95	17-19/5-95
Prøvemengde (m^{3})	1156,8	1245,6	1162	1129,3	1182,5	1149,6	1140	1148,4	1119	1159,2
Datafiler	DD576221	DD576241	DD576071	DD576251	DD741041	DD740021	DD740051	DD740041	DD741051	DD741061
HCB	90,7	84,2	122	41,0	82,5	96,5	96,5	101	100	88,4
PCB-28(+16)	22,3	9,90	48,8	10,5	21,3	57,8	143	9,20	21,1	54,3
PCB-31	18,8	8,72	46,4	9,03	19,2	54,0	130	8,40	19,4	50,3
PCB-52	4,16	2,84	8,33	2,37	5,88	10,7	29,0	2,32	4,21	11,2
PCB-101	0,84	0,76	1,12	0,55	1,75	1,15	3,31	0,52	0,63	1,65
PCB-105	0,07 (b)	0,06 (b)	0,09 (b)	0,05 (b)	0,19	0,07 (b)	0,28	0,07 (b)	0,09 (b)	0,19
PCB-118	0,29 (b)	0,26 (b)	0,35	0,20 (b)	0,69	0,29 (b)	0,92	0,18 (b)	0,27 (b)	0,62
PCB-138	0,27 (b)	0,24 (b)	0,32	0,22 (b)	0,58	0,23 (b)	0,70	0,23 (b)	0,26 (b)	0,47
PCB-153	0,33	0,28	0,36	0,26 (b)	0,62	0,27 (b)	0,71	0,27 (b)	0,25 (b)	0,52
PCB-156	0,01 (b)	0,01 (b)	0,02 (b)	0,01 (b)	0,03 (b)	0,01 (b)	0,04 (b)	0,03 (b)	0,01 (b)	0,03 (b)
PCB-180	0,08 (b)	0,07 (b)	0,10 (b)	0,06 (b)	0,10 (b)	0,04 (b)	0,11	0,09 (b)	0,05 (b)	0,11

(b): Lavere enn 5 x blidverd
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.
Det skyldes mulig interferanse eller instrument støy.
(g): Gjenvinning av intemstandard oppfyller ikke NILUs krav.
Vedlegg til målerapport nr.: Lavere enn deteksjonsgrensen.
PCB95.XLS
Prøvetakingssted: Zeppelinfjellet, Ny-Ålesund Prøvetype: Luft Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$

NILU-Prøvenummer	$95 / 493$	$95 / 600$	$95 / 608$	$95 / 604$	$95 / 601$	$95 / 669$	$95 / 670$	$95 / 691$	$95 / 690$	$95 / 692$
Ukenr.	21	22	23	24	25	26	27	28	29	30
Prøvemerking	$24-26 / 5-95$	$31-2 / 6-95$	$8-9 / 6-95$	$14-16 / 6-95$	$21-23 / 6-95$	$28-30 / 6-95$	$5-7 / 7-95$	$12-14 / 7-95$	$19-21 / 7-95$	$26-28 / 7-95$
Prøvemengde $\left(\mathrm{m}^{3}\right)$	1147,3	1157,5	578,4	1148,4	1148,6	1161,6	1135,5	1109,6	1145,2	1173,5
Datafiler	DD740061	DD741071	DD576211	DD765041	DD576161	DD741031	DD739091	DD740031	DD741111	DD741121
HCB	94,3	110	211	98,5	97,5	102	105	93,0	104	92,4
PCB-28(+16)	33,3	46,9	49,4	6,16	19,9	12,1	5,56	12,2	5,30	3,89
PCB-31	29,7	43,5	44,4	5,49	18,4	11,2	5,14	11,0	4,67	3,59
PCB-52	6,36	8,30	11,1	1,84	4,82	2,57	1,54	3,08	1,52	1,43
PCB-101	1,01	0,98	1,90	0,43	0,80	0,41 (b)	0,38 (b)	0,70	0,36 (b)	0,40 (b)
PCB-105	0,13	0,09 (b)	0,32	0,05 (b)	0,13	0,06 (b)	0,05 (b)	0,08 (b)	0,04 (b)	0,04 (b)
PCB-118	0,43	0,30 (b)	0,86	0,15 (b)	0,36	0,16 (b)	0,15 (b)	0,24 (b)	0,14 (b)	0,14 (b)
PCB-138	0,41	0,23 (b)	0,79	0,16 (b)	0,43	0,20 (b)	0,19 (b)	0,27 (b)	0,18 (b)	0,18 (b)
PCB-153	0,42	0,25 (b)	0,76	0,19 (b)	0,45	0,19 (b)	0,18 (b)	0,31 (b)	0,18 (b)	0,18 (b)
PCB-156	0,03 (b)	0,01 (b)	0,04 (b)	0,01 (b)	0,03 (b)	0,01 (b)	0,02 (b,i)	0,03 (b)	0,01 (b)	0,01 (b)
PCB-180	0,11	0,05 (b)	0,15	0,04 (b)	0,11	0,06 (b)	0,05 (b)	0,09 (b)	0,05 (b)	0,08 (b)

[^3](i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.
Det skyldes mulig interferanse eller instrument støy.
(g): Gjenvinning av intemstandard oppfyller ikke NILUs krav. <: Lavere enn deteksjonsgrensen.
Vedlegg til målerapport nr.: O-221
Prøvetakingssted: Zeppelinfjellet, Ny -Ålesund Prøvetype: Luft
Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$

NILU-Prøvenummer	$95 / 689$	$95 / 887$	$95 / 901$	$95 / 902$	$95 / 903$	$95 / 904$	$95 / 890$	$95 / 906$	$95 / 893$	$95 / 1105$
Ukenr.	31	32	33	34	35	36	37	38	39	40
Prøvemerking	$2-4 / 8-95$	$9-11 / 8-95$	$16-18 / 8-95$	$23-25 / 8-95$	$30 / 8-1 / 9-95$	$6-8 / 9-95$	$13-15 / 9-95$	$20-22 / 9-95$	$27-29 / 9-95$	$4-6 / 10-95$
Prøvemengde $\left(\mathrm{m}^{3}\right)$	1163	1149,6	1178,5	1171,3	1188,3	928,5	1113,3	1158,5	1149,5	1161,6
Datafiler	DD741101	DE215101	DE215121	DE214031	DE22031	DE213041	DE222021	DE213091	DE215061	DE213051
HCB	87,0	105	114	101	109	109 (g)	105	97,8	97,2	92,1
PCB-28(+16)	25,0	13,8	14,8	22,3	29,9	29,9	48,0	85,1	28,9	31,1
PCB-31	23,5	9,60	9,72	15,6	19,8	20,7	33,2	60,6	20,4	20,0
PCB-52	4,94	2,47	3,82	3,57	4,83	4,75	7,76	17,6	6,24	55,47
PCB-101	1,00	0,48	0,97	0,50	0,71	0,72	0,99	2,28	0,57	1,19
PCB-105	0,17	0,09 (b)	0,10 (b)	0,06 (b)	0,07 (b)	0,09 (b)	0,15	0,17	0,16	0,14
PCB-118	0,50	0,20 (b)	0,30 (b)	0,15 (b)	0,18 (b)	0,21 (b)	0,33	0,47	0,45	0,37
PCB-138	0,53	0,16 (b)	0,34	0,12 (b)	0,16 (b)	0,18 (b)	0,22 (b)	0,26 (b)	0,27 (b)	0,24 (b)
PCB-153	0,55	0,17 (b)	0,34	0,13 (b)	0,18 (b)	0,20 (b)	0,25 (b)	0,31	0,32	0,29
PCB-156	0,09	0,01 (b)	0,02 (b)	0,01 (b)	0,02 (b)	0,01 (b)				
PCB-180	0,24	0,04 (b)	0,07 (b)	0,03 (b)	0,04 (b)	0,04 (b)	0,05 (b)	0,04 (b)	0,05 (b)	0,04 (b)

(b): Lavere enn $5 \times$ blindverdi,
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.
Det skyldes mulig interferanse eller instrument stoy.
(g): Gjenvinning av intermstandard oppfyller ikke NILUs krav. <: Lavere enn deteksjonsgrensen.
Vedlegg til målerapport nr.: O-221
Prosjekt: O-93062
Prøvetakingssted: Zeppelinfjellet, Ny-Ålesund

NILU-Prøvenummer	95/1106	95/1107	95/1108	95/1109	95/1110	95/1111	95/1112	95/1113	96/92	96/93
Ukenr.	41	42	43	44	45	46	47	48	49	50
Prøvemerking	11-13/10-95	18-20/10-95	25-27/10-95	1/10-3/11-95	8-10/11-95	15-17/11-95	22-24/11-95	29/11-1/12-95	6-8/12-95	13-15/12-95
Prøvemengde (m^{3})	1215	1144,8	1154,4	1142,4	1192,8	1156,8	1156,8	1161,6	1101,7	955,7
Datafiler	DE214041	DE222061	DE215071	DE222041	DE222051	DE215080	DE215111	DE213081	DE215011	DE222091
HCB	108	105	97,7	99,7	97,0	96,1	95,1	99,5 (g)	87,4	85,5
PCB-28(+16)	39,8	26,9	16,0	66,9	60,2	31,4	12,9	77,8 (g)	51,6	71,3
PCB-31	26,9	16,5	9,94	44,8	39,9	22,0	9,12	49,4 (g)	34,8	47,3
PCB-52	6,50	3,95	2,87	9,12	9,46	5,33	2,90	11,6 (g)	7,89	7,47
PCB-101	0,99	0,57	0,48	0,87	1,20	0,72	0,61	1,50 (g)	1,21	0,67
PCB-105	0,10 (b)	0,07 (b)	0,06 (b)	0,08 (b)	0,10 (b)	0,07 (b)	0,07 (b)	0,16 (g)	0,14	0,11 (b)
PCB-118	0,30 (b)	0,16 (b)	0,18 (b)	0,24 (b)	0,40	0,21 (b)	0,21 (b)	0,39 (g)	0,38	0,26 (b)
PCB-138	0,22 (b)	0,13 (b)	0,13 (b)	0,18 (b)	0,30 (b)	0,18 (b)	0,21 (b)	0,31 (g)	0,24 (b)	0,21 (b)
PCB-153	0,25 (b)	0,17 (b)	0,15 (b)	0,20 (b)	0,30	0,19 (b)	0,23 (b)	0,33 (g)	0,30	0,22 (b)
PCB-156	0,01 (b,i)	0,01 (b)	<0,002	0,01 (b)	0,01 (b)	0,01 (b)	0,02 (b)	0,02 (b,g)	0,01 (b)	0,02 (b)
PCB-180	0,04 (b)	0,03 (b)	0,03 (b)	0,03 (b)	0,10 (b)	0,03 (b)	0,07 (b)	0,06(b,g)	0,05 (b)	0,05 (b)

[^4]Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$

NILU-Prøvenummer	96/94	96/95								
Ukenr.	51	52								
Prøvemerking	20-22/12-95	27-29/12-95								
Prøvemengde (m^{3})	1168,8	1132,8								
Datafiler	DE215051	DE215041								
HCB	85,6	90,8								
$\begin{gathered} \text { PCB-28(+16) } \\ \text { PCB-31 } \end{gathered}$	$\begin{aligned} & 35,2 \\ & 24,8 \end{aligned}$	$\begin{aligned} & 36,7 \\ & 24,8 \end{aligned}$								
PCB-52	5,42	5,08								
$\begin{aligned} & \text { PCB-101 } \\ & \text { PCB-105 } \\ & \text { PCB-118 } \\ & \hline \end{aligned}$	$\begin{gathered} 0,66 \\ 0,10 \text { (b) } \\ 0,29 \text { (b) } \end{gathered}$	$\begin{gathered} 0,66 \\ 0,07 \text { (b) } \\ 0,23 \text { (b) } \\ \hline \end{gathered}$								
$\begin{aligned} & \text { PCB-138 } \\ & \text { PCB-153 } \\ & \text { PCB-156 } \\ & \hline \text { PCB-1 } 80 \end{aligned}$	$\begin{aligned} & 0,23 \text { (b) } \\ & 0,22 \text { (b) } \\ & 0,02 \text { (b) } \\ & 0,05 \text { (b) } \end{aligned}$	$\begin{aligned} & 0,18 \text { (b) } \\ & 0,21 \text { (b) } \\ & 0,01 \text { (b) } \end{aligned}$								
PCB-180	0,05 (b)	0,04 (b)								

[^5]
Målerapport nr. O-229

Oppdragsgiver: Statens forurensningstilsyn (SFT)
Postboks 8100 Dep
0032 OSLO
Prosjekt nr.: O-93062

Prøvetaking:

Sted:
Ansvar:
Zeppelinfjellet, Ny-Ålesund
Kommentar: På grunn av lang prøvetakingstid (to døgn) er det sannsynligvis gjennombrudd av de mest flyktige PAH-forbindelsene (bisykliske forbindelser). Dette gjelder spesielt for naftalen og for de metylsubstituerte naftalenene.
Prøven nr. 95/666, 7.-10.7.95, er en 3-døgnsprøve.
For uke nr. 2 mangler det prøve.
For uke nr. 27 er det tatt to prøver.
Følgende prøver er ikke analysert pga. mangler og feil ved prøvetaking:
95/94, 11.-13.1.95: Dato og flowangivelse mangler.
95/304, 22.-24.3.95: Stopptid (klokkeslett) mangler.
Mye snø, vått filter.

Prøveinformasjon:

51 prøver tatt i perioden 4.1.-29.12.95.
Prøvenummer og prøvetakingsdato fremgår av analyserapporten.

Analyser:

Utført av: Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
Målemetode: NILU-O-3 ("Bestemmelse av polysykliske aromatiske hydrokarboner
Måleusikkerhet: $\pm 15 \%$
Kommentarer: Kvantifisering er utført med GC/MS, som må anses som en forbedring i forhold til NLLUs akkrediterte metode. Analysene er likevel ikke akkrediterte.

Kommentarer forts.

For noen forbindelser er det interferens. Dette er merket med (i) i vedleggene. For forbindelsene benzo(a)fluoren og benzo(b)fluoren er det noen ganger interferens (i) som sannsynligvis indikerer at konsentrasjonene kan være noe for store i forhold til reelle verdier. Forbindelsen 2-metylantracen er plassert innenfor parentes og ikke medregnet i totalkonsentrasjonen pga. identifikasjonsusikkerhet.
Konsentrasjonene er generelt så lave at de ofte kommer til å ligge innenfor kvalitetskriteriet: "Prøvekonsentrasjonene skal være 10 ganger større enn blindkonsentrasjonene". Dette gjelder spesielt for de flyktigste PAHer (naftalenene) hvor blindverdiene er høye og ofte ligger i samme størrelsesorden som prøvekonsentrasjonene.
Gjenvinning (\%) av internstandarder oppfyller ikke kvalitetskriteriet for noen prøver. Dette er et analyseteknisk problem avhengig av løselighet/respons av den brukte gjenvinningsstandarden og har med stor sannsynlighet ingen betydning for nøyaktigheten av kvantifiseringen.

Godkjenning: Kjeller, 14. mai 1996

Ole-Anders Braathen

Ole-Anders Braathen
Leder, Organisk analyse

Vedlegg: $\quad 51$ analyseresultater: 18 sider Målerapporten og vedleggene omfatter totalt 20 sider

Måleresultatene gielder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.

PAH - Analyseresultater

Vedlegg til mâlerapport nr.:	O-229		
NILUs pravenummer:	$95 / 93$	Prøvetyoe:	Luft
Kunde:	SFT	Prøvernengde:	$1125 \mathrm{~m}^{3}$
Kundens pravemerking:	AMAP	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$

Prove nr//betegnelse	$95 / 93,4 .-6.1 .95$		
PAH	$\mathrm{pg} / \mathrm{m}^{3}$		
Naftalen	2855 b		
2-Metylnaftalen	845 b		
1-Metylnaftalen	695 b		
Bifenyl	2000		
Acenaftylen	22		
Acenaften	44		
Dibenzofuran	3303		
Fluoren	1628		
Dibenzotiofen	159		
Fenantren	536		
Antracen	27		
2-Metylfenantren	31		
2-Metylantracen	-		
1-Metylfenantren	22		
Fluoranten	156		
Pyren	39		
Benzo(a)fluoren	5,4		
Reten	17		
Benzo(b)fluoren	37		
Benzo(ghi)fluoranten	-		
Syklopenta(cd)pyren	41		
Benz(a)antracen	82		
Krysen/trifenylen	153		
Benzo(b/j/k)fluorantener	64		
Benzo(a)fluoranten	56		
Benzo(e)pyren	48		
Benzo(a)pyren	8,9		
Perylen	53		
Inden(1,2,3-cd)pyren	8,3		
Dibenzo(ac/ah)antracen	53		
Benzo(ghi)perylen	7,0		
Antantren	31		
Coronen	13276		
Totalt:			

Kommentarer: $\quad i=$ interferens

$$
b=\text { mindre enn } 10 \text { ganger blindverdi }
$$

PAH - Analyseresultater

Vedlegg til málerapport nr.:	O-229	Prøvetype:	Luft
NiLUs prøvenummer:	$95 / 179,183,180$	Prøvemengde:	$1112 \mathrm{~m}^{3}, 1150 \mathrm{~m}^{3}, 1142 \mathrm{~m}^{3}$
Kunde:	SFT	Máleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A08-A38, 42, 39 A.I

Prove nr/betegnelse	95/179, 18.-20.1.95	95/183, 25.-27.1.95	95/180, 1.-3.2.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1313 b	646 b	8480 b
2-Metylnaftalen	388 b	1894 b	1632 b
1-Metylnaftalen	266 b	1804 b	1609 b
Bifenyl	751	2038	2069
Acenaftylen	11 b	35	12 b
Acenaften	18 b	26	18 b
Dibenzofuran	1561	2467	2508
Fluoren	707	1032	1014
Dibenzotiofen	70	76	77
Fenantren	254	627	368
Antracen	15	56	68 b
2-Metylfenantren	23	44	24
2-Metylantracen	$(8,6)$	(77)	(15)
1-Metylfenantren	13	28	16
Fluoranten	158	557	273
Pyren	87	382	173
Benzo(a)fluoren	(25) i	(112) i	(37) i
Reten	3,4 b	11	4,0
Benzo(b)fluoren	8,1	43	15
Benzo(ghi)fluoranten	8,7	25	21
Syklopenta(cd)pyren	1,7 b	16	12
Benz(a)antracen	6,9	37	20
Krysen/trifenylen	17	94	51
Benzo(b/j/k)fluorantener	53	261	149
Benzo(a)fluoranten	3,8 b	25	16
Benzo(e)pyren	19	88	49
Benzo(a)pyren	11	74	29
Perylen	1,3 b	9,9	8,2
Inden(1,2,3-cd)pyren	31	107	67
Dibenzo(ac/ah)antracen	3,7 b	16	7,9
Benzo(ghi)perylen	21	68	43
Antantren	0,9 b	9,2	3,9 b
Coronen	11	38	17
Totalt:	5862	12746	18830

Kommentarer: $\quad i=$ interferens

$$
\mathrm{b}=\text { mindre enn } 10 \text { ganger blindverdi }
$$

Vedlegg til mâlerapport nr.:	O-229	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 181,182,296$	Prøvemengde:	$1172 \mathrm{~m}^{3}, 1152 \mathrm{~m}^{3}, 1162 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A08-A38, 41, 45 A.1

Prove nr./betegnelse	95/181, 8.-10.2.95	95/182, 15.-17.2.95	95/296, 22.-24.2.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	730 b	2078 b	1059 b
2-Metylnaftalen	1478 b	556 b	1267 b
1-Metyinaftalen	1245 b	439 b	956 b
Bifenyl	2552	1347	2358
Acenaftylen	19 b	5,9 b	8,0 b
Acenaften	27	12 b	39
Dibenzofuran	1414	2018	4370
Fluoren	1634	811	1886
Dibenzotiofen	152	84	174
Fenantren	439	153	541
Antracen	20	23	26
2-Metylfenantren	30	15 b	17 b
2-Metylantracen	(12)	$(7,0)$	$(8,8)$
1-Metylfenantren	17	7,7 b	9,0 b
Fluoranten	273	81	217
Pyren	163	41	89
Benzo(a)fluoren	(49) i	(12) i	9,8
Reten	6,8	3,5 b	2,0 b
Benzo(b)fluoren	17	3,8 b	5,9
Benzo(ghi)fluoranten	13	2,9 b	14
Syklopenta(cd)pyren	13	2,4 b	6,7
Benz(a)antracen	17	3,3 b	11
Krysen/trifenylen	35	7,1	34
Benzo(b/j/k)fluorantener	129	27	66
Benzo(a)fluoranten	46	49	13
Benzo(e)pyren	42	11	24
Benzo(a)pyren	39	12	17
Perylen	4,8 b	2,2 b	2,6 b
Inden(1,2,3-cd)pyren	60	12	20
Dibenzo(ac/ah)antracen	$(9,6) \mathrm{i}$	1,7 b	2,7 b
Benzo(ghi)perylen	38	9,1	19
Antantren	6,0	1,7 b	1,6 b
Coronen	27	5,2	9,2
Totalt:	10745	7838	13275

Kommentarer:
$i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

Vedlegg til målerapport nr.:	O-229	Pravetype:	Luft
NILUs prøvenummer:	$95 / 298,300,302$	Provemengde:	$1184 \mathrm{~m}^{3}, 1145 \mathrm{~m}^{3}, 1157 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhe::	$\mathrm{Pg} / \mathrm{m}^{3}$
Kundens prevemerking:	AMAP	Datafiler:	A08-A46, 47, 48 A.I

Prove nr./betegnelse	95/298, 1.-3.3.95	95/300, 8.-10.3.95	95/302, 15.-17.3.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	*) 2200 b	1546 b	1634 b
2-Metyinaftalen	1203 b	725 b	945 b
1-Metylnaftalen	864 b	459 b	654 b
Bifenyl	1837	892	1464
Acenaftylen	8,5 b	24	4,2 b
Acenaften	24	20	6,0 b
Dibenzofuran	2844	1296	2099
Fluoren	963	411	335
Dibenzotiofen	93	34	32
Fenantren	321	134	147
Antracen	25	145	15
2-Metylfenantren	18	13 b	11 b
2-Metylantracen	(10)	(646)	$(8,5)$
1-Metylfenantren	9,2 b	8,8 b	6,0 b
Fluoranten	168	70	105
Pyren	91	57	72
Benzo(a)fluoren	(10) i	1,9b	8,0
Reten	1,0 b	1,8 b	2,2 b
Benzo(b)fluoren	4,9 b	$(1,4) \mathrm{ib}$	4,4 b
Benzo(ghi)fluoranten	13	2,9 b	8,5
Syklopenta(cd)pyren	5,1	<0,5	1,7 b
Benz(a)antracen	14	10	7,4
Krysen/trifenylen	42	19	25
Benzo(b/j/k)fluorantener	70	18	46
Benzo(a)fluoranten	9,0	4,3 b	7,7
Benzo(e)pyren	25	8,0	18
Benzo(a)pyren	14	4,8 b	11
Perylen	2,5 b	1,9 b	1,6 b
Inden(1,2,3-cd) pyren	23	4,7 b	16
Dibenzo(ac/ah)antracen	3,2 b	1,3 b	2,4 b
Benzo(ghi)perylen	20	7,5	- 14
Antantren	1,6 b	<0,5	$1,0 \mathrm{~b}$
Coronen	8,2	1,2 b	6,1
Totalt:	10935	5924	7710

Kommentarer: *) kvantifisert ut fra topphøyden
$\mathrm{i}=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til málerapport nr.:	O-229	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 306,308,392$	Prøvemengde:	$1230 \mathrm{~m}^{3}, 1145 \mathrm{~m}^{3}, 1185 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prevemerking:	AMAP	Datafiler:	A08-A49, 50,51 A.I

Prove nr/betegnelse	95/306,29.-31.3.95	95/308, 5.-7.4.95	95/392, 12.-14.4.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1802 b	1850 b	706 b
2-Metylnaftalen	1117 b	982 b	423 b
1-Metylnaftalen	706 b	620 b	260 b
Bifenyl	1093	498	194 b
Acenaftylen	3,4 b	3,1b	1,4 b
Acenaften	6,3 b	4,5 b	4,1 b
Dibenzofuran	1763	1021	496
Fluoren	245	152	95
Dibenzotiofen	22	29	16
Fenantren	71 b	187	87 b
Antracen	7,5 b	38	5,4 b
2-Metylienantren	5,8 b	9,2 b	99 b
2-Metylantracen	$(8,1)$	(11)	$(3,0)$
1-Metylfenantren	2,7b	5,2 b	$6,0 \mathrm{~b}$
Fluoranten	59	69	31 b
Pyren	38 b	38 b	16 b
Benzo(a)fluoren	3,8 b	2,9 b	1,5 b
Reten	1,5 b	<1,0	<0,5
Benzo(b)fluoren	$(2,2) \mathrm{ib}$	1,9 b	1,3 b
Benzo(ghi)fluoranten	5,1 b	5,0 b	1,2 b
Syklopenta(cd)pyren	1,2b	1,5 b	<0,5
Benz(a)antracen	3,1 b	2,3 b	0,9 b
Krysen/trifenylen	14	11	2,2 b
Benzo(b/j/k)fluorantener	27	20	2,4 b
Benzo(a)fluoranten	8,5	1,7b	0,9 b
Benzo(e)pyren	10	7,3	1,1 b
Benzo(a)pyren	6,7	5,5	1,8 b
Perylen	1,0 b	$<0,5$	<0,5
Inden(1,2,3-cd)pyren	11	6,6	0,8 b
Dibenzo(ac/ah)antracen	1,3 b	$<0,5$	$<0,5$
Benzo(ghi)perylen	10	5,8	<0,5
Antantren	1,4 b	$<0,5$	$<0,5$
Coronen	5,7	1,3 b	$<0,5$
Totalt:	7055	5579	2365

Kommentarer: $\quad i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

Vedlegg til málerapport nr.:	O-229	Prøvetype:	Luft
NILUs prevenummer:	$95 / 394,396,398$	Prgvemengde:	$1153 \mathrm{~m}^{3}, 1178 \mathrm{~m}^{3}, 1154 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A08-A52,53,54 A.I

Prove nr/betegnelse	95/394, 19.-21.4.95	95/396, 26.-28.4.95	95/398, 3.-5.5.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1817 b	1331 b	983 b
2-Metylnaftalen	738 b	941 b	478 b
1-Metylnaftalen	455 b	623 b	284 b
Bifenyl	307 b	280 b	158 b
Acenaftylen	9,3 b	3,4 b	4,5 b
Acenaften	9,7 b	9,2 b	4,3 b
Dibenzofuran	379	154	98
Fluoren	58	71	36
Dibenzotiofen	18	41	15
Fenantren	168	363	133
Antracen	6,5 b	20	9,0 b
2-Metylfenantren	18	73	20
2-Metylantracen	(21)	$(5,7)$	$(6,8)$
1-Metylfenantren	8,8 b	38	13
Fluoranten	20 b	63	31 b
Pyren	10 b	27 b	22 b
Benzo(a)filuoren	$<0,5$	2,1b	2,1 b
Reten	$<0,5$	1,8b	1,3 b
Benzo(b)fluoren	$<0,5$	$<0,5$	i
Benzo(ghi)fluoranten	$<0,5$	0,7 b	1,1 b
Syklopenta(cd)pyren	$<0,5$	$<0,5$	<0,5
Benz(a)antracen	$<0,5$	$<0,5$	0,8 b
Krysen/trifenylen	1,4b	1,1 b	1,6 b
Benzo(b//k)fluorantener	2,0 b	1,8 b	1,8 b
Benzo(a)fluoranten	$<0,5$	1,5 b	<0,5
Benzo(e)pyren	$<0,5$	1,2b	$<0,5$
Benzo(a)pyren	$<0,5$	$<0,5$	<0,5
Perylen	$<0,5$	<0,5	$<0,5$
Inden(1,2,3-cd)pyren	$<0,5$	$<0,5$	$<0,5$
Dibenzo(ac/ah)antracen	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)perylen	$<0,5$	$<0,5$	<0,5
Antantren	$<0,5$	$<0,5$	$<0,5$
Coronen	$<0,5$	$<0,5$	<0,5
Totalt:	4026	4048	2298

Kommentarer: i=interferens
$b=$ mindre enn 10 ganger blindverdi

Vedlegg til málerapport nr::	O-229	Provetype:	Luft
NILUs prøvenummer:	$95 / 495,497,499$	Provemengde:	$1122 \mathrm{~m}^{3}, 1140 \mathrm{~m}^{3}, 1151 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	AOB-A61,62,64 A.I

Prove nr/betegnelse	95/495, 10.-12.5.95	95/497, 17.-19.5.95	95/499, 24.-26.5.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	906 b	550 b	662 b
2-Metylnaftalen	460 b	204 b	391 b
1-Metylnaftalen	299 b	128 b	264 b
Bifenyl	164 b	89 b	138 b
Acenaftylen	15 b	0,8 b	1,4 b
Acenaften	10 b	3,0 b	4,7 b
Dibenzofuran	140	188	84
Fluoren	78	61	33 b
Dibenzotiofen	13	12	8,0
Fenantren	149	92	70 b
Antracen	9,5 b	6,2 b	4,7 b
2-Metylfenantren	22	15 b	12b
2-Metylantracen	(51)	(2,1)	$(3,3)$
1-Metylifenantren	13	7,2 b	6,4 b
Fluoranten	51	19b	11 b
Pyren	35 b	12 b	6,9 b
Benzo(a)fluoren	2,9 b	1,1 b	$<0,5$
Reten	1,9 b	0,6 b	$<0,5$
Benzo(b)fluoren	$(2,1) \mathrm{ib}$	$<0,5$	<0,5
Benzo(ghi)fluoranten	1,4b	0,6 b	<0,5
Syklopenta(cd)pyren	$<0,5$	$<0,5$	$<0,5$
Benz(a)antracen	1,1 b	$<0,5$	$<0,5$
Krysen/trifenylen	3,0 b	1,2 b	0,8 b
Benzo(b/j/k)fiuorantener	3,5 b	1,4 b	$<0,8$
Benzo(a)fluoranten	$<0,5$	$<0,5$	$<0,5$
Benzo(e)pyren	2,2 b	0,9 b	$<0,5$
Benzo(a)pyren	3,2 b	$<0,5$	$<0,5$
Perylen	$<0,5$	$<0,5$	$<0,5$
Inden(1,2,3-cd) pyren	$<0,5$	$<0,5$	$<0,5$
Dibenzo(ac/ah)antracen	$<0,5$	<0,5	<0,5
Benzo(ghi)perylen	$<0,5$	$<0,5$	$<0,5$
Antantren	$<0,5$	$<0,5$	$<0,5$
Coronen	$<0,5$	$<0,5$	$<0,5$
Totalt:	2386	1393	1698

Kommentarer: $\quad i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdi

Vedlegg til málerapport nr.:	O-229	Provetype:	Luft
NILUs prøvenummer:	$95 / 606,603,592$	Provemengde:	$1159 \mathrm{~m}^{3}, 1157 \mathrm{~m}^{3}, 1150 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A08-A63, 65,66 A.I

Prove nr/betegnelse	95/606, 31.5.-2.6.95	95/603, 7.-9.6.95	95/592, 14.-16.6.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	500 b	589 b	693 b
2-Metylnaftalen	321 b	287 b	315 b
1-Metylnattalen	212 b	190 b	218 b
Bifenyl	97 b	110 b	108 b
Acenaftylen	0,6 b	1,0b	2,5 b
Acenatten	3,5 b	3,9 b	4,6 b
Dibenzofuran	56 b	117	89
Fluoren	31 b	43	40
Dibenzotiofen	8,4	15	11
Fenantren	78 b	144	91
Antracen	3,6 b	9,7b	7,1 b
2-Metylfenantren	10 b	15b	14 b
2-Metylantracen	$(1,8)$	(4,0)	(26)
1-Metylfenantren	5,3 b	9,6	10
Fluoranten	10 b	13 b	21 b
Pyren	5,6 b	8,1 b	15 b
Benzo(a)fluoren	<0,5	<1,0	1,4 b
Reten	$<0,5$	2,2 b	2,3 b
Benzo(b)fluoren	$<0,5$	<1,0	$<0,5$
Benzo(ghi)fluoranten	$<0,5$	<0,5	0,6 b
Syklopenta(cd) pyren	$<0,5$	$<0,5$	$<0,5$
Benz(a)antracen	$<0,5$	<0,5	<0,5
Krysen/trifenylen	$<0,5$	1,0 b	1,3 b
Benzo(b//k)fluorantener	$<0,5$	<1,0	1,6 b
Benzo(a)fluoranten	$<0,5$	$<0,5$	<0,5
Benzo(e)pyren	$<0,5$	$<0,5$	<0,5
Benzo(a)pyren	$<0,5$	$<0,5$	$<0,5$
Perylen	$<0,5$	$<0,5$	$<0,5$
Inden(1,2,3-cd)pyren	$<0,5$	$<0,5$	$<0,5$
Dibenzo(ac/ah)antracen	$<0,5$	$<0,5$	<0,5
Benzo(ghi)perylen	<0,5	$<0,5$	$<0,5$
Antantren	$<0,5$	<0,5	<0,5
Coronen	$<0,5$	$<0,5$	$<0,5$
Totalt:	1342	1559	1646

Kommentarer: $\quad i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

Vedlegg til málerapport nr.:	O-229	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 594,663,664$	Prøvemengde:	$1144 \mathrm{~m}^{3}, 1166 \mathrm{~m}^{3}, 1144 \mathrm{~m}^{3}$
Kunde:	SFT	Máleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A08-A67, 70, 71 A.I

Prøve nr/betegnelse	95/594, 21.-23.6.95	95/663, 28.-30.6.95	95/664, 5.-7.7.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1088 b	958 b	1436 b
2-Metyinaftalen	200 b	346 b	213 b
1-Metylnaftalen	129 b	228 b	128 b
Bifenyl	74 b	124 b	78 b
Acenaftylen	<0,5	1,2 b	1,6 b
Acenaften	2,4 b	3,7 b	2,7 b
Dibenzofuran	85	69 b	64 b
Fluoren	36 b	27 b	27 b
Dibenzotiofen	7,1b	8,1	11
Fenantren	57 b	59 b	68 b
Antracen	13 b	$4,0 \mathrm{~b}$	12 b
2-Metylfenantren	10 b	9,7 b	13 b
2-Metylantracen	$(3,9)$	$(3,1)$	$(6,5)$
1-Metylfenantren	5,7 b	6,8 b	8,5 b
Fluoranten	12 b	7,3 b	28 b
Pyren	7,2 b	5,1 b	26 b
Benzo(a)fluoren	<0,5	<0,5	i
Reten	<0,5	<0,5	<1,0
Benzo(b)fluoren	<0,5	<1,0	i
Benzo(ghi)fluoranten	<0,5	<0,5	3,3 b
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	<0,5	1,8 b
Krysen/trifenylen	<0,5	0,6 b	5,1
Benzo(b/j/k)fluorantener	<0,5	<1,0	7,1
Benzo(a)fluoranten	$<0,5$	<0,5	<0,5
Benzo(e)pyren	<0,5	<0,5	3,0 b
Benzo(a)pyren	<0,5	$<0,5$	3,5 b
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	<0,5	<0,5
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	$<0,5$	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	1726	1858	2141

Kommentarer: $\quad i=$ interferens

Vedlegg til málerapport nr:	$0-229$	Prøvetype:	Luft
NILUs provenummer:	$95 / 666,661,670 B$	Provemengde:	$1758 \mathrm{~m}^{3}, 1162 \mathrm{~m}^{3}, 1112 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prevemerking:	AMAP	Datafiler:	A08-A72, 73, 75 A.I

Prøve nr./betegnelse	95/666, 7.-10.7.95	95/661, 10.-12.95	95/670B, 12.-14.7.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1064 b	1933 b	802 b
2-Metyinaftalen	178 b	249 b	197 b
1-Metylnaftalen	115 b	153 b	124 b
Bifenyl	56 b	91 b	59 b
Acenaftylen	0,6 b	2,3 b	0,7 b
Acenaften	1,9 b	3,3 b	2,1 b
Dibenzofuran	55 b	82	34 b
Fluoren	22 b	45	17 b
Dibenzotiofen	12	27	8,6
Fenantren	76 b	125	71 b
Antracen	2,2 b	13 b	2,2 b
2-Metylfenantren	8,5 b	24	11 b
2-Metylantracen	$(1,8)$ b	(40)	$(3,6)$
1-Metylfenantren	4,8 b	19	5,6 b
Fluoranten	6,3 b	23 b	7,2 b
Pyren	3,7 b	22 b	5,0 b
Benzo(a)fluoren	<0,5	$(4,1) i$	<0,5
Reten	<0,5	3,2 b	<0,5
Benzo(b)fluoren	<0,5	$(2,7)$ ib	<0,5
Benzo(ghi)fluoranten	<0,5	1,2 b	<0,5
Syklopenta(cd)pyren	$<0,5$	<0,5	$<0,5$
Benz(a)antracen	<0,5	0,8 b	<0,5
Krysen/trifenylen	<0,5	3,2 b	0,8 b
Benzo(b/j/k)fluorantener	<0,5	1,9 b	0,6 b
Benzo(a)fluoranten	<0,5	<0,5	<0,5
Benzo(e)pyren	<0,5	<1,0	3,0 b
Benzo(a)pyren	<0,5	<1,0	3,5 b
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	1,5 b	<0,5
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	<0,5	1,6 b	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	1606	2832	1348

Kommentarer: i=interferens

$$
\mathrm{b}=\text { mindre enn } 10 \text { ganger blindverdi }
$$

PAH - Analyseresultater

Vedlegg til mâlerapport nr::	O-229	Pravetype:	Luft
NILUs pravenummer:	$95 / 672 \mathrm{~B}, 673 \mathrm{~B}, 671 \mathrm{~B}$	Pravemengde:	$1159 \mathrm{~m}^{3}, 1176 \mathrm{~m}^{3}, 1169 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens pravemerking:	AMAP	Datariler:	A08-A74, 78, 76 A.I

Prove nrJbetegnelse	95/672, 19.-21.7.95	95/673B, 26.-28.7.95	95/671B, 2.-4.8.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	664 b	993 b	994 b
2-Metylnaftalen	238 b	243 b	359 b
1-Metylnaftalen	156 b	145 b	207 b
Bifenyl	73 b	97 b	134 b
Acenaftylen	2,3 b	1,4 b	0,9 b
Acenatten	3,3 b	3,3 b	2,6 b
Dibenzofuran	66 b	101	75
Fluoren	34 b	38 b	39 b
Dibenzotiofen	16	17	17
Fenantren	116	(180) i	130
Antracen	21	11 b	4,0 b
2-Metylfenantren	16	24	19
2-Metylantracen	$(8,2)$	$(4,5)$	$(1,4)$
1-Metylfenantren	11	16	13
Fluoranten	16 b	27 b	25 b
Pyren	11 b	20 b	17 b
Benzo(a)fluoren	<1,0	1,3 b	<1,0
Reten	<1,0	<1,0	2,9 b
Benzo(b)fluoren	<1,0	<1,0	<1,0
Benzo(ghi)fluoranten	1,1 b	<1,0	0,9 b
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	0,8 b	<0,5
Krysen/trifenylen	1,7 b	2,2 b	2,5 b
Benzo(b/j/k)fluorantener	<1,0 b	<1,0	<1,0
Benzo(a)fluoranten	<0,5	<0,5	<0,5
Benzo(e)pyren	<0,5	<0,5	<0,5
Benzo(a)pyren	<0,5	<0,5	<0,5
Perylen	<0,5	$<0,5$	<0,5
Inden(1,2,3-cd)pyren	<0,5	<0,5	<0,5
Dibenzo(ac/ah)antracen	$<0,5$	<0,5	<0,5
Benzo(ghi)perylen	<0,5	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	1446	1921	2043

Kommentarer: $\quad i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til málerapport nr.:	O-229	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 888,891,912$	Pravemengde:	$1174 \mathrm{~m}^{3}, 1146 \mathrm{~m}^{3}, 1190 \mathrm{~m}^{3}$
Kunde:	SFT	Máleenhet:	$\mathrm{Og} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A09-A03, A08-A77, 79 A.1

Prove nr/Jbetegnelse	95/888, 16.-18.8.95	95/891, 23.-25.8.95	95/912, 30.8.-1.9.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1689 b	2164 b	482 b
2-Metylnaftalen	425 b	246 b	221 b
1-Metylnaftalen	282 b	137 b	116 b
Bifenyl	170 b	74 b	85 b
Acenaftylen	2,8b	1,3 b	0,7 b
Acenaften	6,3b	3,6 b	3,4 b
Dibenzofuran	163	66 b	84
Fluoren	65	32 b	31 b
Dibenzotiofen	25	10	9,2
Fenantren	141	85 b	74 b
Antracen	16	4,2 b	4,1 b
2-Metylfenantren	18	11 b	14 b
2-Metylantracen	$(5,0)$	$(2,6)$ b	$(3,6)$
1-Metylfenantren	10	5,5 b	$7,8 \mathrm{~b}$
Fluoranten	16 b	9,7 b	10 b
Pyren	11 b	$7,0 \mathrm{~b}$	$8,0 \mathrm{~b}$
Benzo(a)fluoren	$<0,5$	$<0,5$	<0,5
Reten	$<0,5$	$<0,5$	$<0,5$
Benzo(b)fluoren	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)fluoranten	$<0,5$	$<0,5$	$<0,5$
Syklopenta(cd)pyren	$<0,5$	$<0,5$	$<0,5$
Benz(a)antracen	$<0,5$	$<0,5$	$<0,5$
Krysen/trifenylen	1,2 b	$<1,0$	0,8 b
Benzo(b/j/k)fluorantener	$<0,5$	$<0,5$	$1,0 \mathrm{~b}$
Benzo(a)fluoranten	$<0,5$	$<0,5$	$<0,5$
Benzo(e)pyren	$<0,5$	$<0,5$	$<0,5$
Benzo(a)pyren	$<0,5$	$<0,5$	$<0,5$
Perylen	$<0,5$	$<0,5$	$<0,5$
Inden(1,2,3-cd)pyren	$<0,5$	$<0,5$	$<0,5$
Dibenzo(ac/ah)antracen	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)perylen	$<0,5$	$<0,5$	$<0,5$
Antantren	<0,5	$<0,5$	$<0,5$
Coronen	<0,5	$<0,5$	$<0,5$
Totalt:	3041	2856	1156

Kommentarer: $\quad i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til málerapport nr::	$0-229$	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 913,889,914$	Prøvemengde:	$951 \mathrm{~m}^{3}, 1122 \mathrm{~m}^{3}, 1147 \mathrm{~m}^{3}$
Kunde:	SFT	Maleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A09-A04, 05, 06 A.1

Prøve nr Jbetegnelse	95/913, 6.-8.9.95	95/889, 13-15.9.95	95/914, 20.-22.9.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1168 b	1244 b	864 b
2-Metylnaftalen	360 b	319 b	331 b
1-Metylnaftalen	192 b	179 b	184 b
Bifenyl	91 b	78 b	116 b
Acenaftylen	1,3 b	1,3 b	2,3 b
Acenaften	4,1 b	3,8 b	6,0 b
Dibenzofuran	103	99	137
Fluoren	36	40	46
Dibenzotiofen	16	16	22
Fenantren	132	125	197
Antracen	9,4	4,3 b	11 b
2-Metylfenantren	17 b	11 b	18
2-Metylantracen	(13)	$(1,9)$	$(1,9)$
1-Metylfenantren	6,4 b	4,2 b	$7,9 \mathrm{~b}$
Fluoranten	16 b	11 b	24 b
Pyren	12 b	5,4 b	14 b
Benzo(a)fluoren	<0,5	<0,5	<0,5
Reten	<0,5	6,0	<0,5
Benzo(b)fluoren	<0,5	<0,5	<0,5
Benzo(ghi)fluoranten	<0,5	<0,5	<0,5
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	<0,5	<0,5
Krysen/trifenylen	<1,0	<0,5	$<1,0$
Benzo(b/j/k)fluorantener	<1,0	<0,5	<0,5
Benzo(a)fluoranten	<0,5	<0,5	$<0,5$
Benzo(e)pyren	<0,5	<0,5	<0,5
Benzo(a)pyren	<0,5	<0,5	<0,5
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	$<0,5$	<0,5
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	$<0,5$	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	2164	2147	1980

Kommentarer: $\quad i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til málerapport nr.:	O-229	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 892,1117,1118$	Prøvemengde:	$1161 \mathrm{~m}^{3}, 1157 \mathrm{~m}^{3}, 1221 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prevemerking:	AMAP	Datafiler:	A09-A07, 08, 13 A.I

Prøve nr.betegnelse	95/892, 27.-29.9.95	95/1117, 4.-6.10.95	95/1118, 11.-13.10.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1618 b	721 b	801 b
2-Metylnaftalen	279 b	319 b	589 b
1-Metylnaftalen	162 b	180 b	362 b
Bifenyl	135 b	231 b	283 b
Acenaftylen	1,4 b	2,1 b	1,5 b
Acenaften	5,3 b	5,5 b	5,9 b
Dibenzofuran	291	601	427
Fluoren	107	180	108
Dibenzotiofen	53	49	26
Fenantren	307	256	131
Antracen	-	5,5 b	8,1 b
2-Metylienantren	13 b	19	7,7 b
2-Metylantracen	$(1,5)$	$(2,3)$	$(2,2)$
1-Metylfenantren	7,2 b	9,2 b	3,6 b
Fluoranten	49	84	97
Pyren	16 b	101	42
Benzo(a)fluoren	$<0,5$	<1,0	<0,5
Reten	$<0,5$	<1,0	<0,5
Benzo(b)fluoren	$<0,5$	$<1,0$	$<0,5$
Benzo(ghi)fluoranten	$<0,5$	$5,0 \mathrm{~b}$	$<0,5$
Syklopenta(cd)pyren	$<0,5$	$<0,5$	$<0,5$
Benz(a)antracen	$<0,5$	1,5 b	<0,5
Krysen/trifenylen	$<1,0$	4,9 b	$<0,5$
Benzo(b/j/k)fluorantener	<0,5	5,2	$<0,5$
Benzo(a)fluoranten	$<0,5$	$<0,5$	$<0,5$
Benzo(e)pyren	$<0,5$	3,1 b	$<0,5$
Benzo(a)pyren	$<0,5$	$<1,0$	$<0,5$
Perylen	$<0,5$	$<0,5$	$<0,5$
Inden(1,2,3-cd)pyren	$<0,5$	<1,0	$<0,5$
Dibenzo(ac/ah)antracen	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)perylen	$<0,5$	$<1,0$	$<0,5$
Antantren	$<0,5$	$<0,5$	$<0,5$
Coronen	$<0,5$	$<0,5$	$<0,5$
Totalt:	3044	2783	2893

Kommentarer: $\quad i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdi

Vedlegg til málerapport nr ::	O-229	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 1119,1120,1121$	Prøvemengde:	$1168 \mathrm{~m}^{3}, 1136 \mathrm{~m}^{3}, 1146 \mathrm{~m}^{3}$
Kunde:	SFT	Máleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A09-A14, 15, 16 A.I

Prøve nr./betegnelse	95/1119, 18.-20.10.95	95/1120, 25.-27.10.95	95/1121, 1.-3.11.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	658 b	1806 b	889 b
2-Metylnaftalen	428 b	733 b	461 b
1-Metylnaftalen	261 b	466 b	293 b
Bifenyl	269 b	672	604
Acenaftylen	1,5 b	3,5 b	2,4b
Acenaften	5,5 b	12 b	6,4 b
Dibenzofuran	327	838	921
Fluoren	70	252	279
Dibenzotiofen	21	61	60
Fenantren	126	284	146
Antracen	3,1b	15	2,9 b
2-Metylfenantren	12 b	9,7 b	5,9 b
2-Metylantracen	$(1,4)$	$(3,7)$	$(1,5)$
1-Metylfenantren	4,7 b	3,4 b	,
Fluoranten	9,8 b	53	52
Pyren	5,2 b	32	26 b
Benzo(a)fluoren	<0,5	<0,5	i
Reten	<0,5	<0,5	<0,5
Benzo(b)fluoren	<0,5	<0,5	<0,5
Benzo(ghi)fluoranten	<0,5	3,3 b	3,2 b
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	1,7 b	2,3 b
Krysen/trifenylen	<0,5	6,5	12
Benzo(b/j/k)fluorantener	<0,5	12	21
Benzo(a)fluoranten	<0,5	<0,5	3,0 b
Benzo(e)pyren	$<0,5$	5,2	7,8
Benzo(a)pyren	<0,5	3,7 b	2,7 b
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	<1,0	6,0
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	<0,5	$(5,6) \mathrm{i}$	6,0
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	2202	5279	3813

Kommentarer:
$\mathrm{i}=$ interferens

$$
b=\text { mindre enn } 10 \text { ganger blindverdi }
$$

Vedlegg til málerapport $\mathrm{nr}:$	$\mathrm{O}-229$	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 1122,1123,1124$	Prøvemengde:	$1174 \mathrm{~m}^{3}, 1154 \mathrm{~m}^{3}, 1156 \mathrm{~m}^{3}$
Kunde:	SFT	Máleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A09-A9/10, 17, 18 A.I

Prove nr./betegnelse	95/1122, 8.-10.11.95	95/1123, 15.-17.11.95	95/1124, 22.-24.11.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	998 b	2615 b	1457 b
2-Metylnaftalen	425 b	918 b	743 b
1-Metylnaftalen	268 b	601 b	548 b
Bifenyl	636	944	945
Acenaftylen	1,7b	3,2 b	4,3 b
Acenaften	6,8 b	8,1 b	12 b
Dibenzofuran	1024	1287	1364
Fluoren	298	357	498
Dibenzotiofen	61	57	87
Fenantren	110	157	327
Antracen	21	9,8 b	13
2-Metylfenantren	5,8 b	9,7 b	14 b
2-Metylantracen	$(3,6)$	$(2,5)$	$(3,8)$
1-Metylfenantren	3,5 b	4,0	7,9 b
Fluoranten	54	61	169
Pyren	42	39	98
Benzo(a)fluoren	i	i	11
Reten	<0,5	<0,5	<1,0
Benzo(b)fluoren	<0,5	<0,5	5,6
Benzo(ghi)fluoranten	2,7 b	3,3 b	10
Syklopenta(cd)pyren	0,9 b	<0,5	4,2
Benz(a)antracen	1,5 b	2,2 b	7,8
Krysen/trifenylen	8,1	9,8	30
Benzo(b/j/k)fluorantener	17	17	68
Benzo(a)fluoranten	<0,5	<0,5	3,6 b
Benzo(e)pyren	6,4	6,4	25
Benzo(a)pyren	3,8 b	2,4 b	14
Perylen	<0,5	<0,5	2,1 b
Inden(1,2,3-cd)pyren	5,4	2,8 b	16
Dibenzo(ac/ah)antracen	<0,5	<0,5	$1,4 \mathrm{~b}$
Benzo(ghi)perylen	7,3	5,8	14
Antantren	<0,5	<0,5	<1,0
Coronen	1,3 b	<0,5	4,7
Totalt:	4009	7121	6505

Kommentarer: $\quad i=$ interferens

[^6]169

PAH - Analyseresultater

Vedlegg til málerapport $\mathrm{nr} .: ~$	$\mathrm{O}-229$	Prøvetype:	Luft
NILUs prøvenummer:	$95 / 1125,96 / 75,96 / 76$	Prøvernengde:	$1152 \mathrm{~m}^{3}, 1091 \mathrm{~m}^{3}, 1145 \mathrm{~m}^{3}$
Kunde:	SFT	Máleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datatiler:	A09-A19, 20,21 A.1

Prove nr./betegnelse	95/1125, 29.11.-1.12.95	96/75, 6.-8.12.95	96/76, 13.-15.12.95
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	713 b	1189 b	3199 b
2-Metylnaftalen	182 b	290 b	822 b
1-Metylnaftalen	154 b	234 b	806 b
Bifenyl	502	759	1479
Acenaftylen	1,9 b	1,2 b	19 b
Acenaften	4,0 b	8,0 b	22 b
Dibenzofuran	869	1138	2051
Fluoren	270	381	799
Dibenzotiofen	58	65	173
Fenantren	192	164	614
Antracen	15	27	42
2-Metylfenantren	15 b	13 b	25
2-Metylantracen	$(3,9)$	$(2,1)$	(22)
1-Metylfenantren	7,5 b	4,6 b	14
Fluoranten	59	41	267
Pyren	35 b	24 b	171
Benzo(a)fluoren	i	<1,0	26
Reten	<0,5	<0,5	<1,0
Benzo(b)fluoren	$<1,0$	<0,5	9,7
Benzo(ghi)fluoranten	3,1 b	2,4 b	23
Syklopenta(cd)pyren	1,1b	<1,0	11
Benz(a)antracen	1,9 b	1,6 b	20
Krysen/trifenylen	7,2	6,9	62
Benzo(b/j/k)fluorantener	12	12	127
Benzo(a)fluoranten	<1,0	<1,0	8,1
Benzo(e)pyren	4,4 b	5,6	46
Benzo(a)pyren	2,4 b	2,1 b	26
Perylen	<0,5	<0,5	3,5 b
Inden(1,2,3-cd) pyren	4,5 b	<2,0	30
Dibenzo(ac/ah)antracen	<1,0	<0,5	<1,0
Benzo(ghi)perylen	$(5,0) \mathrm{i}$	4,7 b	26
Antantren	<1,0	<0,5	<1,0
Coronen	<0,5	<0,5	<1,0
Totalt:	3119	4374	10921

Kommentarer: $\quad i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til málerapport nr::	O-229	Prøvetype:	Luft
NILUs prøvenummer:	$96 / 77,78$	Prøvemengde:	$1157 \mathrm{~m}^{3}, 1125 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A09-A22, 23, A.1

Prøve nr//betegnelse	96/77, 20.-22.12.95	96/78, 27.-29.12.95	
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	
Naftalen	4091 b	1671 b	
2-Metylnaftalen	1242 b	505 b	
1-Metylnaftalen	1209 b	444 b	
Bifenyl	2340	972 b	
Acenaftylen	33	9,9 b	
Acenaften	37	9,2 b	
Dibenzofuran	3021	1500	
Fluoren	1410	573	
Dibenzotiofen	178	148	
Fenantren	1214	623	
Antracen	49	26	
2-Metylfenantren	56	31	
2-Metylantracen	(16)	(11)	
1-Metylfenantren	42	19	
Fluoranten	696	297	
Pyren	495	202	
Benzo(a)fluoren	(113) i	24	
Reten	9,4 b	1,2 b	
Benzo(b)fluoren	43	15	
Benzo(ghi)fluoranten	49	24	
Syklopenta(cd)pyren	48	5,7	
Benz(a)antracen	63	25	
Krysen/trifenylen	143	68	
Benzo(b/j/k)fluorantener	317	117	
Benzo(a)fluoranten	33	22	
Benzo(e)pyren	108	44	
Benzo(a)pyren	90	23	
Perylen	17	3,1 b	
Inden(1,2,3-cd)pyren	106	28	
Dibenzo(ac/ah)antracen	12	3,3 b	
Benzo(ghi)perylen	78	32	
Antantren	16	<1,0	
Coronen	42	7,6	
Totalt:	17400	7473	

Kommentarer: $\quad i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdi

NILU
her

Att: John-Erik Haugen

Deres ref./Your ref::	Vår ref./Our ref.:	Rapport nr/Report no.	Kjeller,
	MV/MAa/O-93062	NLLU-U-80/96	25. april 1996

Analyserapport uorganiske analyser

Vedlagt følger analyseresultater for luftprøver for stasjon NY-Ålesund, tungmetaller i perioden 01.01.-31.12.95, bestående av dette brev samt tre sider rapportvedlegg.

Prøvetaking

NILU har ansvaret for prøvetaking på Ny-Ålesund i regi av prosjektet O-93062.

Prøvens tilstand ved mottak

NILU har ingen spesielle kommentarer til prøvens tilstand ved mottak.

Prøvepreparering på NLLU

$1 / 4$ filter blir klippet opp i mindre deler og tilsettes 10 ml kons. HNO_{3} og oppsluttes i PTFEbombe ved 150-170 grader C i 12 timer. Løsningen avkjøles til romtemperatur og føres over i 50 ml graderte plastbegere med 50 ml volummerke. Prøven tilsettes 10 ppb intern standard. Intern standarder som blir brukt er Sc , In og Re.

Analyse

Analysene er utført ved NILUs avdeling for Uorganisk analyse med teknikken ICPMS i henhold til metoden:

- NLLU-U-49

Forskrift for måling av svevestøv, hovedkomponenter og tungmetaller i svevestøv i luft med sierra highvolum provetaker.

Analysemetoden NLLU-U-49 er akkreditert ihht. EN-45001 av Norsk Akkreditering.

NILU	NILU-Troms \varnothing	Bank: 5102.05.19030
P.O. Box 100	P.O. Box 1245	Postgiro: 08133308327
Instituttveien 18	Strandtorget 2B	Foretaksnr./Enterprise No. 941705561
N-2007 KJELLER, Norway	N-9001 TROMSØ, Norway	
Telephone : +4763898000	Telephone : +4777656955	
Telefax : +4763898050	Telefax : +4777656199	
Telex : 74854 nilu n		

Analyseresultater i rapportvedlegg

Analyseresultatene for ICPMS følger som et eget vedlegg med overskrift "NILU ICPMS RAPPORT". Rapportvedlegget består av fire sider. Oppdragsgivers prøveidentifikasjon er angitt i målerapporten for hver enkelt prøve.

Analyseresultatene i rapportvedlegget er gitt med varierende antall gjeldende siffer, da rapportgeneratoren i laboratoriedatabasen er lite fleksibel med hensyn til justering av gjeldende siffer. Siden det vanligvis er vanskelig å spesifisere måleusikkerheten bedre enn ca. 10%, anbefaler vi at det bare benyttes maksimalt 3 gjeldende siffer ved vurdering eller i presentasjon av resultatene.

Et minus "-" foran måleresultatet, betyr at det er mindre enn deteksjonsgrensen for analysemetoden. Er måleresultatet oppgitt som f.eks. "-0.01", betyr det at deteksjonsgrensen for metoden er 0.01 . For luftprøver beregnes måleresultatet i rapporten på basis av luftvolum. I slike tilfeller vil deteksjonsgrensen som rapporteres kunne variere fra prøve til prøve dersom luftvolumet varierer.Deteksjonsgrensen er basert på 1 standardavvik for 12 blindfilter.

Kommentarer

Prøve N5Z107 er sannsynligvis blitt forbyttet ved preparering og er derfor forkastet.

Måleusikkerhet

Måleusikkerheten for ICPMS varierer noe fra element til element. Generelt ligger måleusikkerheten innenfor $\pm 10 \%$ ved $10 \mathrm{ng} / \mathrm{ml}$ (ppb). Måleusikkerheten omfatter bare det som kan tilskrives prøvebehandling og kjemiske analyser på laboratoriet. Ved vurdering av total usikkerhet må det tas hensyn til bidraget fra prøvetaking samt prøvens representativitet. I de tilfellene der NILU ikke har hatt ansvar for prøvetakingen, kan vi ikke tallfeste dette bidraget til usikkerheten.

Kontaktperson ved spørsmål

Dersom det skulle være noen uklarheter, kan spørsmål vedrørende måleresultatene i rapporten rettes til Marit Vadset (ICPMS).

Måleresultatene i rapportvedlegget gjelder kun for de mottatte prøver. Målerapporten skal gjengis i sin helhet, og ikke i utdrag, uten etter godkjennelse fra laboratoriet.

Med vennlig hilsen

Oddvar Røyset
Leder, Uorganisk analyse

Manit Vadert

Marit Vadset

Ingeniør

Vedlegg.
Norsk Institutt for Luftforskning Avdel ing for Uorganisk Analyse
2007 KJELER

$$
\begin{aligned}
& \text { Prove } \\
& \text { ld. }
\end{aligned}
$$

Norsk Irstitutt for Luftforsknire
Avdel ing for Uorganisk Analyse
2007 KJELLER

Avdel ing for Lorganisk Anelyse 2007 KJELLER									NILU icphs rapport										Dato: 9/06/08Side:Rapp: 033062
Pronr	Prove Id.	Fradato	Tildato	Prove	EMET	Utv.	Dil.												
					ENHET				Pb	cd	ou	in	cr	Ni	co	Fe	1 m	v	As
199302	NS5298	88/08/16	$\begin{aligned} & 95 / 98 / 11 \\ & 09 / 108 / 18 \end{aligned}$		refm	50. 50.	$\begin{aligned} & 1 . \\ & 1 . \end{aligned}$	3289. c1804a19 3310. c1604220	$\begin{gathered} -0.04 \\ -0.04 \\ -0.04 \end{gathered}$	$\begin{aligned} & -0.005 \\ & -0.005 \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.1 \end{aligned}$	$\begin{array}{r} 0.3 \\ -0.1 \end{array}$	$\begin{array}{r} -0.1 \\ -0.1 \end{array}$	-0.1	$\begin{gathered} 0.002 \\ -0.001 \end{gathered}$		0.08	-0.02	0.016

Hg i gassfase, Zeppelinfjellet 1995		
Fradato	Tildato	$\mathrm{Hg}(\mathrm{ng} / \mathrm{m} 3)$
04.01.95	05.01 .95	1.65
12.01.95	13.01 .95	1.49
18.01.95	19.01 .95	1.82
25.01.95	26.01 .95	2.01
01.02 .95	02.02 .95	1.70
08.02.95	09.02 .95	1.81
15.02 .95	16.02 .95	1.58
22.02 .95	23.02 .95	1.39
01.03.95	02.03.95	1.60
08.03.95	09.03.95	1.52
15.03 .95	16.03.95	1.20
22.03 .95	23.03 .95	1.71
29.03 .95	30.03.95	1.44
05.04.95	06.04.95	1.72
12.04 .95	13.04 .95	2.52
19.04 .95	20.04.95	1.48
26.04.95	27.04.95	2.06
04.05.95	05.05.95	1.92
10.05.95	11.05 .95	1.95
17.05 .95	18.05.95	1.49
24.05.95	25.05.95	1.93
31.05 .95	01.06.95	1.53
07.06 .95	08.06.95	1.57
14.06 .95	15.06.95	1.54
21.06.95	22.06 .95	2.20
28.06.95	29.06.95	1.81
05.07.95	06.07.95	1.72
12.07.95	13.07.95	1.59
19.07.95	20.07.95	2.14
02.08 .95	03.08.95	1.64
17.07.95	18.08 .95	1.61
30.08.95	31.08.95	1.42
06.09.95	07.09.95	1.67
13.09.95	14.09.95	1.44
20.09.95	21.09.95	1.36
27.09.95	28.09 .95	1.03
11.10.95	12.10 .95	1.27
25.10.95!	26.10 .95	1.28
01.11.95	02.11 .95	1.89
08.11.95	09.11 .95	1.36
15.11.95!	16.09.95	1.44
22.11 .95	23.11 .95	1.34
29.11 .95	30.11.95	1.18
06.12 .95	07.12.95	1.02
13.12.96	14.12.96	1.76

Vedlegg B

Generelle opplysninger og måleprogram

Tabell B.1: Generelle opplysninger om norske bakgrunnsstasjoner, 1995.

Stasjon	Fyike	m.o.h.	Bredde N	Lengde E	Start dato	Stasjonsholder	Adresse
Lista Sagne Skreádalen	Vest-Agder Vest-Agder Vest-Agder	$\begin{array}{r} 13 \\ 15 \\ 465 \\ \hline \end{array}$	$\begin{aligned} & 58^{\circ} 06^{\prime} \\ & 58^{\circ} 05^{\prime} \\ & 58^{\circ} 49^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 6^{\circ} 34^{\prime} \\ & 7^{\circ} 51^{\prime} \\ & 6^{\circ} 43^{\prime} \end{aligned}$	nov-71 okt. 88 nov-71	Lista fyr Odd A. Myklebust Åsa Skreá	4563 Borhaug 4640 Søgne 4440 Tonstad
Birkenes Valle Vatnedalen Solhomfjell	Aust-Agder Aust-Agder Aust-Agder Aust-Agder	$\begin{aligned} & 190 \\ & 250 \\ & 800 \\ & 260 \\ & \hline \end{aligned}$	$\begin{aligned} & 58^{\circ} 23^{\prime} \\ & 59^{\circ} 03^{\prime} \\ & 59^{\circ} 30^{\prime} \\ & 58^{\circ} 56^{\prime} \end{aligned}$	$\begin{aligned} & 8^{\circ} 15^{\prime} \\ & 7^{\circ} 34^{\prime} \\ & 7^{\circ} 26^{\prime} \\ & 8^{\circ} 48^{\prime} \end{aligned}$	nov-71 aug-89 nov-73 sep-90	Olav Lien Torbjørg Straume Lilly Vatnedalen Merethe Felle	4760 Birkeland 4692 Rysstad 4694 Bykle 4850 Ámli
Treungen Møsvatn Langesund Klyve Haukenes	Telemark Telemark Telemark Telemark Telemark	$\begin{array}{r} 270 \\ 940 \\ 12 \\ 60 \\ 20 \\ \hline \end{array}$	$59^{\circ} 01^{\prime}$ $59^{\circ} 50^{\prime}$ $59^{\circ} 01^{\prime}$ $59^{\circ} 09^{\prime}$ $59^{\circ} 12^{\prime}$	$\begin{aligned} & 8^{\circ} 32^{\prime} \\ & 8^{\circ} 20^{\prime} \\ & 9^{\circ} 45^{\prime} \\ & 9^{\circ} 35^{\prime} \\ & 9^{\circ} 31^{\prime} \end{aligned}$	sep-74 okt-92 apr-79 apr-79 apr-79	Per Ø. Stokstad Knut Skavlebø SFT, Kontr.seksjon SFT, Kontr.seksjon SFT, Kontr.seksjon	4860 Treungen 3600 Rjukan 3701 Skien 3701 Skien 3701 Skien
Lardal Ramnes	Vestfold Vestfold	$\begin{aligned} & 210 \\ & 120 \end{aligned}$	$\begin{aligned} & 59^{\circ} 28^{\prime} \\ & 59^{\circ} 22^{\prime} \end{aligned}$	$\begin{array}{r} 9^{\circ} 51^{\prime} \\ 10^{\circ} 12^{\prime} \end{array}$	aug-89 apr-93	Nils Anders Nakjem Odd Flaatten	3275 Svarstad 3175 Ramnes
Prestebakke Jeløya	Østfold Østfold	$\begin{array}{r} 160 \\ 5 \end{array}$	$\begin{aligned} & 59^{\circ} 00^{\prime} \\ & 59^{\circ} 26^{\prime} \end{aligned}$	$\begin{aligned} & 11^{\circ} 32^{\prime} \\ & 10^{\circ} 36^{\prime} \end{aligned}$	$\begin{aligned} & \text { nov-85 } \\ & \text { mai. } 79 \end{aligned}$	Bent Granberg NILU	1780 Kornsjø 2001 Lillestram
Loken Nordmoen	Akershus Akershus	$\begin{aligned} & 150 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 59^{\circ} 48^{\prime} \\ & 60^{\circ} 16^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 11^{\circ} 27^{\prime} \\ & 11^{\circ} 06^{\prime} \\ & \hline \end{aligned}$	feb-72 mar-86	Mimmi Hauer Trygve Nordmoen	1960 Laken i Høland 2032 Maura
Gulsvik	Buskerud	260	$60^{\circ} 22^{\prime}$	$9^{\circ} 39^{\prime}$	sep-74	Tone Sønsteby	3530 Gulsvik
Fagernes	Oppland	460	$61^{\circ} 00^{\prime}$	$9^{\circ} 13^{\prime}$	aug-89	Valdres forsøksring	2901 Fagernes
Osen Valdalen	Hedmark Hedmark	$\begin{array}{r} 440 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & 61^{\circ} 15^{\prime} \\ & 62^{\circ} 05^{\prime} \end{aligned}$	$\begin{aligned} & 11^{\circ} 47^{\prime} \\ & 12^{\circ} 10^{\prime} \end{aligned}$	$\begin{aligned} & \text { sep-87 } \\ & \text { jun-93 } \\ & \hline \end{aligned}$	Jens Ove Øktner Inga Valdal	2460 Osen 2443 Drevsjø
Ualand Egersund Vikedal II	Rogaland Rogaland Rogaland	$\begin{array}{r} 220 \\ 90 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 58^{\circ} 31^{\prime} \\ & 58^{\circ} 30^{\prime} \\ & 59^{\circ} 32^{\prime} \end{aligned}$	$\begin{aligned} & 6^{\circ} 23^{\prime} \\ & 5^{\circ} 59^{\prime} \\ & 5^{\circ} 58^{\prime} \end{aligned}$	jul-91 mar-93 jan-84	Alf Skepstad John Skárland Harald Leifsen	4393 Ualand 4289 Vikesá 4210 Vikedal
Voss Haukeland	Hordaland Hordaland	$\begin{aligned} & 500 \\ & 204 \end{aligned}$	$\begin{aligned} & 60^{\circ} 36^{\prime} \\ & 60^{\circ} 49^{\prime} \end{aligned}$	$\begin{aligned} & 6^{\circ} 32^{\prime} \\ & 5^{\circ} 35^{\prime} \end{aligned}$	$\begin{aligned} & \text { aug-89 } \\ & \text { aug-81 } \end{aligned}$	Rune Soldal Henning Haukeland	5700 Voss 5198 Matredal
Nausta Førde	Sogn og Fjordane Sogn og Fjordane	$\begin{aligned} & 230 \\ & 136 \end{aligned}$	$\begin{aligned} & 61^{\circ} 34^{\prime} \\ & 61^{\circ} 26^{\prime} \end{aligned}$	$\begin{aligned} & 5^{\circ} 53^{\prime} \\ & 5^{\circ} 52^{\prime} \end{aligned}$	$\begin{aligned} & \text { des. } 84 \\ & \text { jan. } 95 \end{aligned}$	Sverre Ullaland Oddleiv Hjellum	6043 Naustdal 6800 Førde
Kårvatn	Mare og Romsdal	210	$62^{\circ} 47{ }^{\prime}$	$8^{\circ} 53^{\prime}$	feb-78	Erik Kárvatn	6645 Todalen
Selbu	Sør-Trøndelag	300	$63^{\circ} 17^{\prime}$	$11^{\circ} 11^{\prime}$	jul-89	Solveig Lorentsen	7580 Selbu
Høylandet Namsvatn	Nord-Trendelag Nord-Trøndelag	$\begin{array}{r} 60 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 64^{\circ} 39^{\prime} \\ & 64^{\circ} 59^{\prime} \end{aligned}$	$\begin{aligned} & 12^{\circ} 19 \\ & 13^{\circ} 35^{\prime} \\ & \hline \end{aligned}$	feb-87 sep-90	Jakob Olav Almás Einar Namsvatn	7977 Høylandet 7894 Limingen
Tustervatn	Nordland	439	$65^{\circ} 50^{\prime}$	$13^{\circ} 55^{\prime}$	des. 71	Are Tustervatn	8647 Bleikvassli
Øverbygd	Troms	90	$69^{\circ} 03^{\prime}$	$19^{\circ} 22^{\prime}$	feb-87	Olav Vártun	9234 Øverbygd
Jergul Svanvik Karpdalen	Finnmark Finnmark Finnmark	$\begin{array}{r} 255 \\ 30 \\ 70 \\ \hline \end{array}$	$\begin{aligned} & 69^{\circ} 27^{\prime} \\ & 69^{\circ} 27^{\prime} \\ & 69^{\circ} 39^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 24^{\circ} 36^{\prime} \\ & 30^{\circ} 02^{\prime} \\ & 30^{\circ} 26^{\prime} \end{aligned}$	$\begin{aligned} & \text { nov-76 } \\ & \text { aug-86 } \\ & \text { aug-86 } \end{aligned}$	Klemet Holmestrand Svanhovd miljøsenter Randi Darmenen	9732 Jergul 9925 Svanvik 9900 Kirkenes
Ny-Ȧlesund Zeppelin	Svalbard Svalbard	$\begin{array}{r} 8 \\ 474 \\ \hline \end{array}$	$\begin{aligned} & 78^{\circ} 55^{\prime} \\ & 78^{\circ} 54^{\prime} \end{aligned}$	$\begin{aligned} & 11^{\circ} 55^{\prime} \\ & 11^{\circ} 53^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 1974 \\ & \text { sep-89 } \end{aligned}$	NP forskningsst. NP forskningsst.	9173 Ny -Ȧlesund 9173 Ny -Ȧlesund

Tabell B. 2 Måleprogram på norske bakgrunnsstasjoner, 1995.

	LUFT										NEDB6R		
	Kontin.	Døgnlig máling					$2+2+3$ døgn				dagn	uke	uke/mnd
Stasjon	Ozon	$\mathrm{SO}_{2} / \mathrm{SO}_{4}$	NO_{2}	sum NO_{3}	sum NH_{4}	Lt	$\mathrm{SO}_{2} / \mathrm{SO}_{4}$	sum NO_{3}	sum NH_{4}	Lt	h.komp	h.komp	tungm.
Blrkenes Søgne Lista Skreádalen	X	x X	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	X X	X x	x	X	x	X		x x x	X	X x
Valle Vatnedalen Treungen Solhomffell												$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	X
Langesund Klyve Haukenes	$\begin{gathered} x \\ x \\ x \\ \hline \end{gathered}$												
Møsvatn Prestebakke Ramnes Lardal	X						X	X	x			$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	X
Jeløya Løken Nordmoen Fagernes	$\begin{aligned} & x \\ & x \end{aligned}$		X				X	X	X	x	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	X
Gulsvik Osen Valdalen Ualand	X	X	X	X	X		X	X			X	$\begin{gathered} x \\ x \\ x \\ \hline \end{gathered}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$
Egersund Vikedal Haukeland Voss	X										X	$\begin{aligned} & x \\ & x \\ & x \\ & \hline \end{aligned}$	
Nausta Førde Kårvain Selbu	x	X	X	X	X						X	$\begin{gathered} x \\ x \\ x \end{gathered}$	X
Haylandet Namsvatn Tustervatn Overbygd	X	X	X	X	X						X	$\begin{gathered} x \\ x \\ x \end{gathered}$	x X
Jergul Svanvik Karpdalen	$\begin{aligned} & x \\ & x \end{aligned}$	X	$\begin{aligned} & x \\ & x \end{aligned}$	X	X		X	X	X		X	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$
Ny -Ålesund Zeppelin	X	X		x	X							X	
Totall antall	14	7	9	7	7	1	5	5	4	1	9	26	14

Kontin. $=$ kontinuerlige málinger.
$2+2+3$ døgn $=$ málefrekvens
sum $\mathrm{NO}_{3}=\mathrm{NO}_{3}+\mathrm{HNO}_{3}$
sum $\mathrm{NH}_{4}=\mathrm{NH}_{4}+\mathrm{NH}_{3}$
h.komp. $=$ mengde (mm), pH, ledn.evne, $\mathrm{SO}_{4}, \mathrm{NO}_{3}, \mathrm{Cl}, \mathrm{NH}_{4}, \mathrm{Ca}, \mathrm{K}, \mathrm{Mg}, \mathrm{Na}$
tungm. $\quad=\mathrm{Pb}, \mathrm{Cd}$ og Zn . For stasjonene Solhomfjell, Ualand, Møsvatn, Valdalen, Namsvatn,
Øverbygd,Svanvik og Karpdalen er det ogsâ bestemt As, Ni, Cu, Coog Cr.
Lt $\quad=\quad$ Máling av Mg, Ca, K, Na og Cliluft.

Vedlegg C

Prøvetaking, kjemiske analyser og kvalitetskontroll

Nedbør

Hovedkomponenter

Nedbørprøver innsamles ved bruk av prøvetakere som står åpne også i perioder uten nedbør (bulk-prøvetakere). Nedbørsamleren er produsert av polyetylen. Diameter i åpningen er 200 mm og denne er plassert 2 meter over bakken. Nedbørprøvetakeren for hovedkomponenter skylles med avionisert vann mellom hver prøvetakingsperiode. Nedbørmengde måles av lokale observatører, og en del av prøven sendes NILU for kjemisk analyse.
pH er bestemt ved potensiometri og ledningsevne ved konduktometri. Både anioner og kationer er bestemt ved ionekromatografi.

Parameter	Deteksjonsgrense (enhet)
pH	-
Ledningsevne	$2(\mu \mathrm{~S} / \mathrm{cm})\left({ }^{*}\right)$
$\mathrm{SO}_{4}{ }^{-}$	0.01 (mg S/l)
$\mathrm{NO}_{3}{ }^{-}$	0.01 (mg N/l)
$\mathrm{NH}_{4}{ }^{+}$	0.01 (mg N/l)
Na^{+}	0.01 (mg Na/l)
Cl^{-}	0.01 (mg Cl/ $/$)
K^{+}	0.01 (mg K/l)
Ca^{++}	0.01 (mg Ca/l)
Mg^{++}	0.01 (mg Mg/l)

Tungmetaller

Ved innsamling av prøver for sporelementanalyse benyttes syrevasket utstyr. Nedbørmengde bestemmes ved veiing etter innsending av hele prøven, og særlige krav til renslighet stilles ved behandling av utstyret.

Bly, kadmium, sink, kopper, nikkel, krom, kobolt og arsen er bestemt med induktivt koplet plasma massespektrometri (ICP-MS). Ioneoptikken er optimalisert for 115 In . Alle prøvene er konservert med $1 \% \mathrm{HNO}_{3} .3$ interne standarder er benyttet (indium, scandium og rhenium).

Parameter	Deteksjonsgrense (enhet)	
As	0.1	$(\mu \mathrm{~g} \mathrm{As} / \mathrm{l})$
Zn	0.1	$(\mu \mathrm{~g} \mathrm{Zn} / 1)$
Pb	0.01	$(\mu \mathrm{~g} \mathrm{~Pb} /)$
Ni	0.2	$(\mu \mathrm{~g} \mathrm{Ni} /)$
Cd	0.005	$(\mu \mathrm{~g} \mathrm{Cd} /)$
Cu	0.1	$(\mu \mathrm{~g} \mathrm{Cu} / \mathrm{l})$
Cr	0.2	$(\mu \mathrm{~g} \mathrm{Cr} / 1)$
Co	0.01	$(\mu \mathrm{~g} \mathrm{Co} / \mathrm{l})$

Kvikksølv

Til nedbørprøvetaking anvendes IVLs (Institut för Vatten- och Luftvårdsforskning, Sverige) prøvetaker for kvikksølv. Nedbørsamleren for kvikksølv er produsert av glass og plassert 2 meter over bakken. Analysene utføres av IVL: Kvikksølv i nedbør blir redusert til Hg° og oppkonsentreres på gullfelle. Ved analyse varmedesorberes Hg° og detekteres ved bruk av atomfluorescens-spektrofotometri. Deteksjonsgrense for metoden er 0.2 ng Hg i absolutt mengde.

Persistente organiske forbindelser

Nedbørprøver for måling av heksaklorsykloheksan ($\alpha-$ og γ-HCH) og heksaklorbenzen (HCB) samles ved hjelp av bulk prøvetakere som står åpne også perioder uten nedbør. Dette medfører at en del av prøven også vil inkludere tørravsetningen. Til prøvetaking brukes en 60 mm høy glassylinder med 285 mm indre diameter som går over i en glasstrakt. Glasstrakten er montert direkte på 11 Pyrex glassflaske med slip. Glasstrakten henger i et metallstativ mens flaskene står på en høyderegulerbar stativplate 2 meter over bakkenivå. Det tas ukentlige prøver med prøvetakingsstart hver mandag morgen. Mellom hver ny prøvetaking rengjøres trakten med destillert vann.

Nedbørprøven tilsettes isotopmerkete internstandarder og væskeekstraheres med pentan under omrøring i målekolbe i 4 timer. Pentanfasen oppkonsentreres og behandles med konsentrert svovelsyre. Den organiske fasen tørkes med natriumsulfat og overføres på en kolonne pakket med natriumsulfat og silika. Ekstraktet elueres med heksan/dietyl eter og oppkonsentreres. Det ferdige ekstraktet tilsettes gjenvinningsstandard og analyseres ved hjelp gasskromatografi/massespektrometri (GC/MS). Den massespektrometriske teknikk som benyttes er kjemisk ionisasjon med negative ioner (NCI) med registrering av to ioner for hver komponent (SIM).

Parameter	Deteksjonsgrense (enhet)
$\alpha-\mathrm{HCH}$	$0.02(\mathrm{ng} / \mathrm{l})$
$\gamma-\mathrm{HCH}$	$0.07(\mathrm{ng} / \mathrm{I})$
HCB	$0.2(\mathrm{ng} / \mathrm{l})$

Luft

Alle uorganiske hovedkomponenter i luft unntatt nitrogendioksid, ozon og tungmetaller er bestemt ved at gasser og partikler er tatt opp i en filterpakke bestående av et partikkelfilter av teflon (Zeflour $2 \mu \mathrm{~m}$), et alkalisk impregnert filter (Whatman 40 tilsatt kaliumhydroksid (KOH) og glycerol) og et surt impregnert filter (Whatman 40 tilsatt oksalsyre $\left.(\mathrm{COOH})_{2}\right)$.

Partikkelfilteret ekstraheres med avionisert vann i ultralydbad. KOH-filteret ekstraheres med vann tilsatt hydrogenperoksid $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ og oksalsyrefilteret ekstraheres med $0,01 \mathrm{M}$ salpetersyre $\left(\mathrm{HNO}_{3}\right)$. Ekstraktene fra partikkelfilteret og KOH -filteret analyseres ved ionekromatografi som for nedbør. Ekstraktet fra oksalsyrefilteret analyseres spektrofotometrisk med indophenolmetoden.

Svoveldioksid $\left(\mathrm{SO}_{2}\right)$ og sulfat finnes av sulfat fra KOH -filteret hhv. partikkelfilteret. Ved SO_{2}-konsentrasjoner større enn ca. $100 \mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3}$, som forekommer i Svanvik, nyttes data fra samtidige målinger med absorpsjonsløsning.
"Sum ammonium" $\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$ finnes ved å summere ammonium fra partikkelfilteret og oksalsyrefilteret.
"Sum nitrat" $\left(\mathrm{NO}_{3}{ }^{-}+\mathrm{HNO}_{3}\right)$ finnes ved å summere nitrat fra partikkelfilteret og KOH -filteret.

Natrium, magnesium, kalsium, kalium og klorid bestemmes i partikkelfilterekstraktet.

Parameter	Deteksjonsgrense (enhet)	
SO_{2}	0,01	$\left(\mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3}\right)$
SO_{4}^{--}	0,01	$\left(\mathrm{\mu g} \mathrm{~g} / \mathrm{m}^{3}\right)$
$\mathrm{Sum}\left(\mathrm{NO}_{3}-\mathrm{HNO}_{3}\right)$	0,01	$\left(\mu \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}\right)$
$\mathrm{Sum}\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$	$0,05-0.1\left(\mu \mathrm{~m} \mathrm{~N} / \mathrm{m}^{3}\right)$	
NO_{2}	0.03	$\left(\mu \mathrm{~m} \mathrm{~N} / \mathrm{m}^{3}\right)$
Na^{+}	0.02	$\left(\mu \mathrm{~g} \mathrm{Na} / \mathrm{m}^{3}\right)$
Cl^{-}	0.02	$\left(\mu \mathrm{~g} \mathrm{Cl} / \mathrm{m}^{3}\right)$
K^{+}	0.02	$\left(\mu \mathrm{~g} \mathrm{~K} / \mathrm{m}^{3}\right)$
Ca^{++}	0.02	$\left(\mu \mathrm{~g} \mathrm{Ca} / \mathrm{m}^{3}\right)$
Mg^{++}	0.02	$\left(\mu \mathrm{~g} \mathrm{Mg} / \mathrm{m}^{3}\right)$

Analysemetoden for nitrogendioksid $\left(\mathrm{NO}_{2}\right)$ ble i løpet av 1993 og 1994 endret for alle stasjoner fra TGS-metoden til NaI-metoden. NaI-metoden er basert på at NO_{2} blir absorbert på et glass-sinter filter tilsatt natriumiodid (NaI). Glass-sinteret ekstraheres med vann. Det dannede nitritt ($\mathrm{NO}_{2}{ }^{-}$) blir bestemt spektrofotometrisk ved 550 nm etter reaksjon med sulfanilamid og N -(1-naftyl)-etylendiamindihydroklorid (NEDA). Overgangen fra TGS- til NaI-metoden skjedde på følgende tidspunkt: Zeppelinfjellet (1/1/91), Kårvatn (20/2/92), Birkenes (1/1/93), Tustervatn (1/6/93), Lardal (26/2/94), Svanvik (26/2/94), Søgne (28/2/94), Prestebakke (3/3/94), Osen (10/3/94), Valle (20/4/94), Nordmoen (1/5/94) og Skreådalen (11/8/94).

Ozon $\left(\mathrm{O}_{3}\right)$ blir bestemt ved kontinuerlig registrering av UV-absorpsjon, dvs. at ozonmengden i en luftprøve blir målt ved å måle absorpsjonen av UV-lys ved 254 nm i prøven. Resultatene lagres som timemiddelverdier.

Tungmetaller

Lista
Prøvetaking av luft for analyse av tungmetaller i partikler skjer ved hjelp av en NILU-tofilterprøvetaker med for-impaktor. Det tas en grovfraksjon på $2,5-10 \mu \mathrm{~m}$ og en finfraksjon på mindre enn $2,5 \mu \mathrm{~m}$. Til grovfraksjonen benyttes et Nucleopore filter og til finfraksjonen et Zefluor filter (teflon). Prøvetaking foregår over en uke som tilsvarer et prøvevolum på ca. $90 \mathrm{~m}^{3}$.

Parameter	Deteksjonsgrense $\left(\mathrm{ng} / \mathrm{m}^{3}\right)$	
	Fin fraksjon	Grov fraksjon
Pb	0,002	0,04
Cd	0,001	0,002
Zn	0,5	1,1
Cu	0,02	1,1
Ni	1,1	0,02
Cr	0,3	3,3
As	0,01	0,03
V	0,02	0,7

Ny-Ålesund
Prøvetaking av luft for analyse av tungmetaller i partikler skjer ved hjelp av Sierra høyvolum prøvetaker med for-impaktor som tar bort partikler større enn $2 \mu \mathrm{~m}$. Luftgjennomstrømningshastigheten er 40 fot $3 / \mathrm{min}$ (ca $70 \mathrm{~m}^{3} / \mathrm{time}$). Partikler mindre enn $2 \mu \mathrm{~m}$ som samles på Whatman 41 papirfiltre, blir analysert.

Parameter	Deteksjonsgrense $($ enhet $)$	
Pb	0,01	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Cd	0,01	$\left(\mu \mathrm{~m} / \mathrm{m}^{3}\right)$
Zn	0,01	$\left(\mu \mathrm{~m} / \mathrm{m}^{3}\right)$
Cu	0,01	$\left(\mu \mathrm{~m} \mathrm{~m}^{3}\right)$
Ni	0,03	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Cr	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Co	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
As	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Fe	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Mn	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
V	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$

Elementene analyseres med induktivt koplet plasma massespektrometri (ICP-MS). Ioneoptikken er optimalisert for 115 In . Alle prøvene er konservert med 1% salpetersyre og 3 interne standarder er benyttet (indium, scandium og rhenium).

Kvikksølv

Prøvetaking av gassformig kvikksølv skjer med gullfeller. Luftvolumet er på ca $1 \mathrm{~m}^{3}$. Prøvetakeren består av et forfilter og to gullfeller i rekke. Ei gullfelle er et kvartsrør som inneholder en tråd bestående av ei gull-platina legering. Ved prøvetaking amalgameres kvikksølv i elementær form (Hg°) med edelmetallet.

Ved analyse varmedesorberes Hg° og detekteres ved bruk av atomfluorescensspektrofotometri. Deteksjonsgrense for metoden er $0,2 \mathrm{ng} \mathrm{Hg}$ i absolutt mengde.

Persistente organiske forbindelser

Klororganiske forbindelser:
Luftprøver tas med NILUs høyvolum luftprøvetaker. Denne består av en pumpe tilkoblet en filterholder som er påmontert et åpent inntaksrør for luft. Luften blir
sugd gjennom et filtersystem med et partikkelfilter (glassfiber Gelman Type AE) etterfulgt av to identiske polyurethanskum filtre ($100 \times 50 \mathrm{~mm}$ og tetthet $25 \mathrm{~kg} / \mathrm{m}^{3}$) for prøvetaking av gassfase komponenter (Oehme og Stray, 1982).

Gjennomstrømningshastigheten er ca. $20 \mathrm{~m}^{3} /$ time. Prøvevolumet er ca. $500 \mathrm{~m}^{3}$ for prøvestasjonen på Lista (svarer til et døgns prøvetaking), mens prøvevolumet fra Ny -Ålesund er ca. $1000 \mathrm{~m}^{3}$ (svarer til to døgns prøvetaking). For begge stasjoner er det tatt ukentlige prøver, onsdag til torsdag på Lista og onsdag til fredag på NyÅlesund) gjennom hele året.

Filterne tilsettes isotopmerkete internstandarder og ekstraheres med heksan/dietyl eter (9:1) i 8 timer. Ekstraktet oppkonsentreres og behandles med konsentrert svovelsyre. Den organiske fasen tørkes med natriumsulfat og overføres på en kolonne pakket med natriumsulfat og silika. Ekstraktet elueres med heksan/dietyl eter og oppkonsentreres. Det ferdige ekstraktet tilsettes gjenvinningsstandard og analyseres ved hjelp gasskromatografi-massespektrometri (GC/MS). Den massespektrometriske teknikk som benyttes er kjemisk ionisasjon med negative ioner (NCI) med registrering av to ioner for hver komponent (SIM).

Parameter	Deteksjonsgrense (enhet)	
α-Heksaklorsykloheksan	0,1	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
γ-Heksaklorsykloheksan	0,3	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
tr-klordan	0,06	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
cis-klordan	0,08	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
tr-Nonaklor	0.04	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
cis-Nonaklor	0.02	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
HCB	0.8	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-28	0.7	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-31	0.5	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-52	0.2	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-101	0.06	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-105	0.01	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-118	0.05	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-138	0.05	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-153	0.05	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-156	0.01	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-180	0.02	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$

Polysykliske aromatiske hydrokarboner (PAH)
Luftprøver tas med NILUs høyvolum luftprøvetaker som for klororganiske forbindelser.

Filterne blir tilsatt internstandarder og soxhlet-ekstrahert med sykloheksan i 8 timer. Ekstraktet dampes ned og opparbeides ved hjelp av væske/væskeekstraksjon med dimethylformamid og sykloheksan. Sluttekstraktet (sykloheksan) som inneholder PAH-fraksjonen blir oppkonsentrert, tilsatt gjenvinningsstandard og analysert med GC/MS.

Parameter	Deteksjonsgrense (enhet)	
Naftalen	1,0	(pg/m ${ }^{3}$)
2-metylnaftalen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
1-metylnaftalen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Bifenyl	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Acenaftylen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Acenaften	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Dibenzofuran	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Fluoren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Dibenzotiofen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Fenantren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Antracen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
2-metylfenantren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
2-metylantracen	1,0	(pg/m ${ }^{3}$)
1-metylfenantren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Fluoranten	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Pyren	1,0	(pg/m ${ }^{3}$)
Benzo(a)fluoren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Reten	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benzo(b)fluoren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benzo(ghi)fluranten	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Syklopenta(cd)pyren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benz(a)antracen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Krysen/rifenylen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benzo(b/j/k)fluorantener	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benzo(a)fluoranten	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benzo(e)pyren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benzo(a)pyren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Perylen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Inden($1,2,3-\mathrm{cd}$) pyren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Dibenzo(ac/ah)antracen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Benzo(ghi)perylen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Antantren	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)
Coronen	1,0	($\mathrm{pg} / \mathrm{m}^{3}$)

Fullstendig beskrivelse av metoder for prøvetaking og kjemisk analyse er gitt i NILUs interne metodebeskrivelser.

TIDLIGERE BENYTTEDE ANALYSEMETODER

Før 1991 ble $\mathrm{NH}_{4}{ }^{+}$i nedbør bestemt spektrofotometrisk ved indophenolmetoden mens $\mathrm{Ca}^{++}, \mathrm{K}^{+}, \mathrm{Mg}^{++}$og Na^{+}ble bestemt ved atomabsorpsjonsspektrofotometri. Inntil 1987 ble sink bestemt ved atomabsorpsjonsspektrofotometri i flamme, og bly og kadmium ved atomabsorpsjon i grafittovn.

Den tidligere benyttede metoden TGS for analyse av NO_{2} (variant av Norsk Standard 4855) er basert på at NO_{2} absorberes i en oppløsning som inneholder trietanolamin, o-metoksyfenol (guajakol) og natrium-disulfitt. Det dannede nitritt $\left(\mathrm{NO}_{2}{ }^{-}\right)$ble bestemt som for NaI metoden (se over). Benevning: $\mu \mathrm{g} \mathrm{NO} \mathrm{N}_{2}-\mathrm{N} / \mathrm{m}^{3}$, deteksjonsgrense: $0,3-0,5 \mu \mathrm{~g} \mathrm{NO}_{2}-\mathrm{N} / \mathrm{m}^{3}$.

Inntil 28.2.1989 ble Whatman 40 cellulosefilter benyttet som forfilter for prøvetaking av sulfat foran et KOH -impregnert filter for svoveldioksid.

Sum ammonium og ammoniakk $\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$ ble bestemt ved at gass og partikler ble tatt opp på et filter tilsatt oksalsyre. $\mathrm{NH}_{4}{ }^{+} \mathrm{i}$ ekstraktet fra dette filteret ble bestemt spektrofotometrisk ved indophenol metoden. Nitrat og saltpetersyre $\left(\mathrm{NO}_{3}{ }^{-}+\mathrm{HNO}_{3}\right)$ ble bestemt ved at gass og partikler ble tatt opp på et filter tilsatt natriumhydroksid. Ekstraktet ble analysert ved ionekromatografi.

Kvalitetskontroll

Alt prøvetakingsutstyr etterses og kontrolleres regelmessig. De kjemiske analyser kontrolleres fortløpende bl.a. ved analyse av kontroll- og referanseprøver, samt ved deltagelse i ulike nasjonale og internasjonale interkalibreringer. Alle metoder for prøvetaking og analyse er basert på standard metodikk (f.eks EMEP, 1995). NILUs laboratorier ble i september 1993 akkreditert av Norsk Akkreditering i henhold til standarden NS-EN 45001. I tillegg til den tekniske analysekontroll som utføres ved laboratoriet blir alle analyseresultater sammenstilt med resultater fra nærliggende stasjoner og annen tilgjengelig informasjon. For hver enkelt nedbørprøve beregnes det en ionebalanse, samt at målt ledningsevne sammenlignes med beregnet ledningsevne. Dersom prøven ikke tilfredsstiller visse kriterier vurderes det om prøven kan være kontaminert eller om det kan være feil ved analysen, før resultatet eventuelt korrigeres eller forkastes.

Norsk institutt for luftforskning (NILU)
Postboks 100, N-2007 Kjeller

TITLE
Monitoring of long-range transported air pollutants, Annual report for 1995
ABSTRACT

Air and precipitation chemistry is determined through various monitoring programmes at several sites located in the rural areas of Norway. This report describes the results for 1995, and these are compared to the previous years.

[^7]
[^0]: * mm x 0,5 deteksjonsgrensen.

[^1]: (b): Lavere enn 5 x blindverdi.
 (i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

 Det skyldes mulig interferanse eller instrument støy.
 (g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
 <: Lavere enn deteksjonsgrensen.

[^2]: (b): Lavere enn $5 \times$ blindverdi.
 (i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

 Det skyldes mulig interferanse eller instrument støy.
 (g): Gjenvinning av internstandard oppfyller ikke NILUs krav. <: Lavere enn deleksjonsgrensen.

[^3]: (b): Lavere enn $5 \times$ blindverdi.

[^4]: (b): Lavere enn $5 \times$ blindverdi.
 (i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

 Det skyldes mulig interferanse eller instrument stgy.
 (g): Gjenvinning av intemstandard oppfyller ikke NILUs (g): Gjenvinning av intemstandard oppfyller ikke NILUs krav.
 <: Lavere enn deteksjonsgrensen.

 Vedlegg til målerapport nr.: O-221
 Prøvetakingssted: Zeppelinfjellet, Ny -Ålesund
 Prøvetype: Luft

[^5]: (b): Lavere enn $5 \times$ blindverdi.
 (i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

 Det skyldes mulig interferanse eller instrument støy.
 (g): Gjenvinning av intemstandard oppfyller ikke NILUs krav.
 <: Lavere enn deteksjonsgrensen.

[^6]: $\mathrm{b}=$ mindre enn 10 ganger blindverdi

[^7]: * Kategorier: A Åpen-kan bestilles fra NILU

 B Begrenset distribusjon
 C Kan ikke utleveres

