Statlig program for forurensningsovervåking

Oppdragsgiver: Statens forurensningstilsyn
Direktoratet for naturforvaltning
Rapport nr.: 736/98

Deltakende institusjon: NILU

Overvåking av langtransportert forurenset luft og nedbør

Atmosfærisk tilførsel, 1997

Det statlige programmet omfatter overvåking av forurensningsforholdene i
luft og nedbør
grunnvann
vassdrag og fjorder
havområder
skog
Overvåkingen består i langsiktige undersøkelser av de fysiske, kjemiske og biologiske forhold.

Hovedmålsettingen med overvåkingsprogrammet er å dekke myndighetenes behov for informasjon om forurensningsforholdene med sikte på best mulig forvaltning av naturressursene.

Hovedmålet spenner over en rekke delmål der overvåkingen bl.a. skal:
gi informasjon om tilstand og utvikling av forurensningssituasjonen på kort og lang sikt.
registrere virkningen av iverksatte tiltak og danne grunnlag for vurdering av nye forurensningsbegrensende tiltak.
påvise eventuell uheldig utvikling i resipienten på et tidlig tidspunkt.
over tid gi bedre kunnskaper om de enkelte vannforekomsters naturlige forhold.

Sammen med overvåkingen vil det føres kontroll med forurensende utslipp og andre aktiviteter.

Overvåkingsprogrammet finansieres i hovedsak over statsbudsjettet. Statens forurensningstilsyn er ansvarlig for gjennomføring av programmet.

Resultater fra de enkelte overvåkingsprosjekter publiseres i årlige rapporter.
Henvendelser vedrørende programmet kan i tillegg til de aktuelle institutter rettes til Statens forurensningstilsyn, Postboks 8100 Dep, 0032 Oslo, tlf. 22573400 .

Overvåking av langtransportert forurenset luft og nedbør
 Atmosfærisk tilførsel, 1997

A. Lükewille, S. Manø og K. Tørseth

Utført etter oppdrag fra
Statens forurensningstilsyn og Direktoratet for naturforvaltning

Norsk institutt for luftforskning Postboks 100
2007 Kjeller

Forord

Rapporten presenterer NILUs resultater fra overvåkingen av luft- og nedbørkjemi i 1997. Den atmosfæriske tilførselen av forurensende forbindelser overvåkes ved måling av kjemiske forbindelser i luft og nedbør. Forurensningene tilføres med nedbør, og ved tørravsetning av gasser og partikler. Virkninger av atmosfærisk tilførsel på vannkvalitet, jord, vegetasjon og fauna, følges gjennom overvåking av vassdrag, feltforskningsområder, grunnvann og skogfelt. Resultatene fra den integrerte overvåkingen presenteres samlet i en egen rapport.

I rapporten inngår måledata fra alle norske bakgrunnsstasjoner drevet av NILU i 1997, i alt 40 stasjoner. Stasjonsnettet omfatter "Overvåking av langtransportert forurenset luft og nedbør", inkludert stasjonene som inngår i EMEP (European Monitoring and Evaluation Programme) og "Overvåkingsprogram for skogskader", begge etter oppdrag fra Statens forurensningstilsyn (SFT). Det siste programmet finansieres med midler fra Landbruksdepartementet og SFT, med Norsk institutt for skogforskning (NISK) som programansvarlig. NILU utfører luft- og nedbørmålinger i programmet. Resultatene fra NILUs målinger rapporteres årlig i denne rapportserien. I rapporten inngår også måledata fra bakgrunnsstasjoner som inngår i andre prosjekter, blant andre seks nedbørstasjoner i "Program for terrestrisk naturovervåking" drevet etter oppdrag fra Direktoratet for naturforvaltning (DN). Også resultater fra NILUs nasjonale måleprogram og andre overvåkingsaktiviteter er inkludert.

Rapporten presenterer også overvåkingsresultater fra måleprogrammene CAMP (Comprehensive Atmospheric Monitoring Programme) under Oslo-Pariskommisjonen, OSPARCOM (sporelementer og organiske forbindelser ved Lista), og AMAP (Arctic Monitoring and Assessment Programme, organiske forbindelser og sporelementer ved Ny-Ålesund/Zeppelinfjellet).

Følgende personer har bidratt til årsrapporten:
Jan Erik Hanssen (luftkjemi); Kari Arnesen (bakkenært ozon); Marit Vadset (tungmetaller), Gro Hammerseth (organiske forbindelser), Jan Erik Skjelmoen (databearbeidelse); Kristine Aasarød, Finn Bjørklid (tekst- og grafikktjenester). I tillegg har et stort antall personer bidratt i forbindelse med prøvetaking og ved interne tjenester ved NILU (teknisk vedlikehold, kjemiske analyser osv.).

Innhold

Side
Forord 3
Sammendrag 7
Summary in English 9
Atmosfærisk tilførsel, 1997 11

1. Hovedkomponenter i nedbør 13
1.1. Klima 13
1.2. Nedbør 14
1.3. Tilførsel av forurensninger med nedbøren 14
1.3. Tidsutvikling. 21
2. Sporelementer i nedbør 27
3. Innholdet av svovel- og nitrogenforbindelser i luft. 31
3.1. Luftens innhold av forurensninger 32
3.2. Tidsutvikling. 39
4. Bakkenært ozon 42
4.2. Konsentrasjoner av ozon 43
4.3. Overskridelser av grenseverdier for beskyttelse av helse 49
4.3. Overskridelser av grenseverdier for beskyttelse av vegetasjon 51
5. Overvåking av sporelementer og organiske forbindelser ved Lista (CAMP) og Ny-Ålesund (AMAP) 57
5.1. CAMP (Lista) 57
5.2. AMAP (Ny - Ålesund) 58
5.3. Resultater fra Lista (CAMP) 58
5.3.1 Sporelementer i luft 58
5.3.2. Sporelementer i nedbør 60
5.3.3. Organiske forbindelser i luft 61
5.3.4. Organiske forbindelser i nedbør 62
5.4. Resultater fra Ny -Ålesund (AMAP) 64
5.4.1. Organiske forbindelser luft 64
Referanser 69
Tables, figures and appendices 74
Vedlegg A Resultater fra overvåking av luft- og nedbørkjemi 81
Vedlegg B Generelle opplysninger og måleprogram 169
Vedlegg C Prøvetaking, kjemiske analyser og kvalitetskontroll 173

Sammendrag

Måling av kjemiske hovedkomponenter i nedbør ble i 1997 utført døgnlig ved 9 stasjoner og på ukebasis ved 24 stasjoner. I ukentlige og månedlige nedbørprøver fra 14 stasjoner er konsentrasjonene av sporelementene bly, kadmium og sink bestemt, og for 7 av disse stasjonene også innholdet av arsen, nikkel, kopper, krom og kobolt. Luftprøvetaking av svovel- og nitrogenkomponenter er utført døgnlig eller tre ganger hver uke (2,2 og 3 døgns prøvetaking) på 13 stasjoner. På Hurdal og Birkenes bestemmes også innholdet av magnesium, kalsium, kalium, natrium og klorid i luft. Kontinuerlige målinger av ozonkonsentrasjoner i luft er utført på 14 stasjoner, inklusive stasjonene Klyve, Haukenes og Langesund, drevet av SFTs kontrollseksjon i Nedre Telemark.

Årsmiddelkonsentrasjonene av sterk syre, svovel- og nitrogenkomponenter i nedbøren var høyest langs kysten på Sørøstlandet og Sørlandet med høyeste verdier ved Søgne, Lista, Birkenes, Lardal og Solhomfjell. De laveste verdiene ble målt på Tustervatn, Namsvatn og Kårvatn. Både i Sør- og Nord-Norge var middelkonsentrasjonene av samtlige hovedkomponenter i nedbør generelt noe lavere i 1997 sammenlignet med 1996. Våtavsetningen av sulfat, sterk syre og nitrogen (nitrat og ammonium) var størst langs kysten fra Aust-Agder til Hordaland, med høyeste verdier i Søgne. Milde vintrer tidlig på 1990-tallet har medført perioder med sterk vestlig vind på Vestlandet og på Sørlandet, og episoder med høyt sjøsaltinnhold i nedbøren. Tilførslene av sjøsalter var imidlertid mindre i 19941997 enn i de foregående årene.

Årsmiddelkonsentrasjonene av svoveldioksid og sulfat i luft var høyest langs kysten i Sør-Norge og i Øst-Finnmark. De markert høyeste verdiene av svoveldioksid ble målt i Sør-Varanger på grunn av svovelutslippene på Kolahalvøya. Det var for de fleste målesteder på Sør- og Vestlandet noe høyere konsentrasjonsnivåer av svoveldioksid og partikulært sulfat i luft, mens det i de øvrige landsdeler var noe lavere nivåer sammenlignet med 1996. Innholdet av oksidert nitrogen og redusert nitrogen i luft var størst i Sør-Norge. Målingene viser at på en rekke målesteder kan lokale utslipp av ammoniakk ha innvirkning. Søgne utpeker seg med høye årsverdier for alle luftkomponenter, men bidrag fra lokale kilder har betydning, og særlig for ammoniakk. Det høye innholdet av nitrogendioksid ved Nordmoen og Søgne, især midtvinters, antas også delvis å skyldes lokale kilder (biltrafikk).

Som følge av internasjonale avtaler om reduksjoner i utslipp av svoveldioksid har konsentrasjonen av sulfat i nedbør avtatt med 40-55\% i Sør-Norge og $50-60 \%$ i Nord-Norge siden 1980. Luftens innhold av sulfat har avtatt med 45-60\% fra 1980 til 1997. For svoveldioksid har reduksjonen vært 60-80\% i Sør-Norge, omlag 80\% i Nordland og 70% i Finnmark. Ved Ny-Ålesund har konsentrasjonene av sulfat og svoveldioksid i luft avtatt med hhv. 58% og 54%.

Årsmiddelkonsentrasjonene av nitrat og ammonium i nedbør viser ingen markert tendens siden 1980. Heller ikke luftens innhold av oksidert nitrogen og redusert nitrogen viser noen markert tendens siden disse målingene startet i 1984.

Våtavsetningen av sulfat har avtatt siden 1980, og den er på landsbasis, med unntak av Svalbard, den laveste som er målt hittil.

Beregnet tørravsetning av svovel utgjorde i hele landet, unntatt Finnmark, 5-17\% av de totale avsetningene om vinteren og $19-41 \%$ i vekstsesongen 1997. I Finnmark var tørravsetningsandelen av svovel dominerende med 68-75\% av den totale avsetningen om vinteren og $73-84 \%$ i vekstsesongen. Dette skyldes høye luftkonsentrasjoner og lite nedbør. Tørravsetningen bidrar for nitrogenforbindelser relativt mer til totalavsetningen enn hva som er tilfellet for svovelforbindelser, især om sommeren.

Innholdet av bly, kadmium og sink i nedbør er markert størst i Sør-Norge. Årsmiddelkonsentrasjonene har avtatt med $60-80 \%$ siden slutten av 1970-årene. Det ble imidlertid målt et maksimum for innholdet av bly og sink i Sør-Norge i 1988, men deretter har det vært en markert reduksjon. Det høyeste innholdet av arsen, nikkel, kopper og kobolt måles i Sør-Varanger på grunn av utslipp i Russland.

Månedsmidlene av ozon varierer betydelig over året og viser oftest et maksimum i mars eller april. Konsentrasjonene overskrider ofte anbefalte luftkvalitetskriterier. Det var i 1997 omtrent like mange "episodedøgn" (21 døgn) som gjennomsnittlig de foregående 10 åra ($20,5 \mathrm{~d} ø \mathrm{gn}$). Med episodedøgn menes døgn med maksimal timemiddelverdi på minst $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ på ett sted eller minst $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ på flere steder. Høyeste timemiddelverdi var $162 \mu \mathrm{~g} / \mathrm{m}^{3}$ (Voss, 6. juni 1997 kl .15). Det var kun en overskridelse av SFTs grenseverdi for melding til befolkningen $\left(160 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$. Ingen målesteder hadde timemiddelverdier over EUs grenseverdi for melding til befolkningen ($180 \mu \mathrm{~g} / \mathrm{m}^{3}$). SFTs grenseverdi for beskyttelse av helse (timeverdi over $100 \mu \mathrm{~g} / \mathrm{m}^{3}$) ble overskredet ved alle målesteder. Det ble målt timemiddelverdier over ECEs grenseverdi for beskyttelse av plantevekst ($150 \mu \mathrm{~g} / \mathrm{m}^{3}$) på tre målesteder (Hurdal, Langesund og Voss). Tålegrensen på $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ som middelverdi over 7 timer kl. 09-16 i vekstsesongen (april-sept.) ble overskredet ved alle målesteder. Tålegrensen på $60 \mu \mathrm{~g} / \mathrm{m}^{3}$ som middelverdi over 8 timer (aprilsept.) ble også overskredet i hele landet. Tålegrensen for akkumulert eksponering over $80 \mu \mathrm{~g} / \mathrm{m}^{3}$ (AOT40) ble for landbruksvekster overskredet ved 8 målesteder, mens det for skog ikke var overskridelser.

Kvikksølv viser tydelig nedgang i konsentrasjonen fra 1992 til 1997. Konsentrasjonene av kadmium og sink indikerer imidlertid en \emptyset kning over perioden. Dette er i motsetning til i nedbør hvor det har vært avtagende nivåer de siste år. En mulig årsak til dette kan være en $\varnothing \mathrm{kt}$ frekvens av lufttilførsel fra kilder i ØstEuropa. Nikkel- og sinkkonsentrasjonene er høyere i 1997 sammenlignet med 1996. For elementene arsen og kopper er det ingen klar tendens.

Det er observert en nedgang i konsentrasjonen av α-heksaklorsykloheksan ($\alpha-\mathrm{HCH}$) i luft i Ny-Ålesund siden begynnelsen av 80 -årene, som gjenspeiler redusert bruk av teknisk blanding av dette sprøytemiddelet.

Konsentrasjonen av sum HCH på Lista er generelt ca. to ganger høyere enn konsentrasjonen som måles i Ny - \AA lesund.

Summary in English

This report includes the 1997 monitoring results from the rural air- and precipitation chemistry network in Norway. In 1997, main components in precipitation were measured at 33 sites. Trace elements were determined at 14 sites. Air concentrations of sulphur and nitrogen compounds were measured at 13 sites, and ozone concentrations at 14 sites. An overview of the measurement programme is given in appendix B2. English versions of the single table, figure and appendice captions are attached to the report.

The highest mean volume weighted concentrations of sulphate, nitrate, ammonium and strong acid $\left(\mathrm{H}^{+}\right)$in precipitation were found along the southern Norwegian coast, with the highest values observed at the background stations Søgne, Lista, Birkenes and Lardal. The lowest values were measured at Tustervatn, Namsvatn and Kårvatn in central and northern parts of Norway. The highest wet deposition loads (weighted mean concentrations multiplicated by the respective precipitation amounts) of sulphate, nitrogen components and strong acid occurred along the coast from Aust-Agder to Hordaland county. In almost all parts of the country the mean pollutant concentrations in precipitation were generally lower in 1997 compared to 1996. At most places in Norway, wet pollutant deposition was generally the lowest measured so far.

The annual mean concentrations of sulphate and strong acid in precipitation have been decreasing since the end of the 1970's. Since 1980 the content of sulphate has decreased by about $40-55 \%$ in southern Norway, and by about $50-60 \%$ in northern Norway. The observed reductions in concentration levels are in agreement with reported downwards trends in pollutant emissions in Europe. There is no significant decrease in nitrogen compounds in precipitation.

In the early 1990s, warm winter climate with frequent storms led to episodes with large amounts of sea-salts deposited along the western coast. However, sea-salt deposition was less in 1994 to 1997 than during the previous years.

The highest content of particulate sulphate and of nitrogen components in air and precipitation were measured in southern Norway. Due to emissions from nickel smelters in Russia the mean concentrations of sulphur dioxide were highest in Finnmark.

The annual mean air concentrations of particulate sulphate have generally decreased by 45 to 60% compared to those measured in 1980. At Ny - \AA lesund, annual mean concentrations of sulphur dioxide and sulphate have decreased by 58% and 54%, respectively. Since the late 1970s, the mean concentrations have shown similar developments in all parts of Norway. The levels decreased until 1983, and then increased until 1987. Due to emission reductions in Europe the values strongly decreased from 1988 to 1997.

In all counties except Finnmark dry deposition of sulphur compounds in 1997 was assessed to be $5-17 \%$ of the total deposition during winter and $19-41 \%$ during the
growing season. In Finnmark, the contribution of sulphur dry deposition to total deposition was calculated to be $70-75 \%$ in winter and $70-80 \%$ in summer. These high numbers are caused by high air concentrations and low precipitation amounts. Generally, the contribution of dry deposition to total deposition was higher for nitrogen than for sulphur compounds.

The largest annual mean concentrations of lead, cadmium and zinc in precipitation were measured in southern Norway. Their concentrations decreased by about $60-80 \%$ over the period 1978 to 1997. Temporary maxima of lead and zinc occurred in Southern Norway in 1988. From 1988 to 1994 the contents of zinc and lead decreased markedly at most of the measuring sites. Due to emissions in Russia the levels of arsenic, copper, nickel and cobalt were relatively high in SørVaranger (northern Norway; Svanvik and Karpdalen).

Ozone concentrations vary significantly over the year with the highest monthly averages in March and April. In 1997 concentration levels frequently exceeded the recommended air quality guidelines. There were 21 days with a maximum hourly average of at least $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ at one site or at least $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ at more than one site, which is approximately as many as the last 10-year average (20.5 days). The highest hourly mean was $162 \mu \mathrm{~g} / \mathrm{m}^{3}$ (Voss, 6. June 1997, 3 p.m.). There were no exceedances of the critical level of $180 \mu \mathrm{~g} / \mathrm{m}^{3}$ as hourly mean set by the European Commission. The air quality guideline given by SFT for protection of human health ($100 \mu \mathrm{~g} / \mathrm{m}^{3}$ as hourly mean) was exceeded at all sites. Three sites experienced hourly average values above the ECE critical level for protection of vegetation of $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ (Hurdal, Langesund and Voss). The critical level of $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ as mean value during the growing season (April-Sept., 9 a.m. to $4 \mathrm{p} . \mathrm{m}$.) was exceeded at all sites. Similarly was the critical level of $60 \mu \mathrm{~g} / \mathrm{m}^{3}$ as mean value during the growing season exceeded at all sites. The critical level for accumulated ozone exposure above the threshold of $80 \mu \mathrm{~g} / \mathrm{m}^{3}(40 \mathrm{ppb})$ (termed AOT40) was for crops exceeded at eight sites. The critical level for forests was not exceeded at any site.

There was a significant reduction in the levels of mercury in air during the period 1992 to 1997. Concentration of lead, cadmium and zinc increased over the same period. This is opposite to the trend observed in precipitation chemistry and may be caused by an increased influence of emissions in Eastern Europe.

The air concentration of α-hexachlorocyclohexane ($\alpha-\mathrm{HCH}$) in Ny - \AA lesund has decreased since the early 1980s, reflecting the reduced application of the technical mixture of this insecticide.

The concentration of HCH at Lista is generally about a factor of two higher than the levels found in Ny - \AA lesund.

Overvåking av langtransportert forurenset luft og nedbør

Atmosfærisk tilførsel, 1997

Målet for overvåking av luftens og nedbørens kjemiske sammensetning på norske bakgrunnsstasjoner er å registrere nivåer og eventuelle endringer i tilførselen av langtransporterte forurensninger. Bakgrunnsstasjonene er derfor plassert slik at de er minst mulig påvirket av nærliggende utslippskilder. NILU startet regelmessig prøvetaking av døgnlig nedbør i 1971, med de fleste stasjonene på Sørlandet. Senere er stasjonsnettet og måleprogrammet utvidet for å gi bedret informasjon om tilførsler i hele landet.

Etter avslutningen av SNSF-prosjektet ("Sur nedbørs virkning på skog og fisk") i 1979, ble det i 1980 startet et overvåkingsprogram i regi av Statens forurensningstilsyn (SFT). I 1997 omfattet dette programmet 11 stasjoner fordelt på alle landsdeler. Syv av disse stasjonene inngår i EMEP-programmet (European Monitoring and Evaluation Programme) under FNs konvensjon for grenseoverskridende luftforurensninger. I 1985 ble det opprettet et eget "Overvåkingsprogram for skogskader", drevet med midler fra Landbruksdepartementet og SFT. Norsk institutt for skogforskning (NISK) er programansvarlig, og NILU utfører luft- og nedbørmålinger for prosjektet. Noen stasjoner i SFTs $ø$ vrige overvåkingsprogram er tilknyttet skogovervåkingsflater (Birkenes, Gulsvik (Langtjern), Osen, Vikedal (Nedstrand), Kårvatn og Tustervatn).

I "Program for terrestrisk naturovervåking" utfører NLU på oppdrag fra Direktoratet for naturforvaltning overvåkning (DN) av nedbørkjemi ved overvåkingsfelter i Solhomfjell, Møsvatn, Børgefjell (Namsvatn), Lund (Ualand), Dividalen (\emptyset verbygd) og Gutulia (Valdalen). Program for terrestrisk naturovervåking er rettet mot effekter av langtransporterte forurensninger og skal følge bestands- og miljøgiftutvikling i dyr og planter. Integrerte studier av tilførsel, jord, vegetasjon og fauna, samt landrepresentative registreringer inngår. NILUs måledata i program for terrestrisk naturovervåking har tidligere vært publisert i egne overvåkingsrapporter (se f.eks Tørseth og Hermansen, 1995), men er fra 1995 rapportert i denne rapportserien. Denne rapporten er registrert som rapport nr. 86 i Program for terrestrisk naturovervåking.

En del stasjoner er tilknyttet andre prosjekter:
NILUs nasjonale måleprogram: Lista, Vatnedalen, Løken, Haukeland.
Arktisk måleprogram (SFT): Ny -Ålesund, Zeppelinfjellet.
Overvåking av bakkenær ozon (SFT): Jeløya.
SFTs kontrollseksjon i Nedre Telemark: Ozonmålestasjonene Langesund, Klyve, og Haukenes.
Oslo Lufthavn AS' målestasjon nær hovedflyplassen på Gardermoen: Nordmoen.

Figur 1: Norske bakgrunnsstasjoner i 1997.

Oslo/Paris kommisjonen (OSPAR) (finansiert av SFT): Sporelementer og organiske forbindelser ved Lista.
AMAP (finansiert av SFT): Sporelementer og organiske forbindelser ved Ny-Ålesund/ Zeppelinfjellet.

For nærmere opplysninger om stasjonene vises til SFT 416/90. Resultater fra overvåkingen er tidligere publisert i årsrapportene for 1980 (SFT 26/81), 1981 (SFT 64/82), 1982 (SFT 108/83), 1983 (SFT 162/84), 1984 (SFT 201/85), 1985 (SFT 256/86), 1986 (SFT 296/87), 1987 (SFT 333/88), 1988 (SFT 375/89), 1989 (SFT 437/91), 1990 (SFT 466/91), 1991 (SFT 506/92), 1992 (SFT 533/93), 1993 (SFT 583/94), 1994 (SFT 628/95), 1995 (SFT 663/96) og 1996 (SFT 703/97).

1. Hovedkomponenter i nedbør

Nedbørdata er presentert på måneds- og årsbasis som veide middelkonsentrasjoner og som våtavsetninger i vedlegg A.1.1-A.1.21. Stasjonsopplysninger, måleprogram og prøvetakingsfrekvens er gitt i vedlegg B. 1 og B.2. Prøvetaking og kjemisk analysemetodikk er beskrevet i vedlegg C .

Veid middelkonsentrasjon er produktsummen av de døgnlige middelkonsentrasjoner og nedbørmengder (våtavsetning) dividert med den totale nedbørmengden i perioden. Alle sulfatverdier gitt i rapporten er korrigert for sjøsaltbidraget, som fortrinnsvis er beregnet på basis av forholdet mellom innholdet av natrium, eventuelt magnesium eller klorid, og sulfat i sjøvann.

Tre stasjoner ble nedlagt i 1997: Jergul, Namsvatn og Solhomfjell (målinger til 1. april 1997). Målestasjonen ved Jergul ble flyttet til Karasjok den 1. januar 1997, mens målingene ved Jergul ble opprettholdt til 1. april 1997. Målestasjonene Namsvatn og Solholmfjell ble nedlagt 1. april 1997.

1.1. Klima

Årstemperaturen i 1997 var $0,9^{\circ} \mathrm{C}$ høyere enn normalen, og siste varmere året var 1992 med $1,1^{\circ} \mathrm{C}$ høyere (DNMI, 1997-1998). Det aller varmeste året siden DNMI startet med temperaturmålinger for 130 år siden var 1992 med $1,7{ }^{\circ} \mathrm{C}$ høyere enn normalen.

I Oslo-området var det relativt varmest med 1,4 til $1,8^{\circ} \mathrm{C}$ over normalen. Oslo fikk det 6 . varmeste året på 130 år. I Akershus var temperaturen også 1,4 til $1,9^{\circ} \mathrm{C}$ over normalen. I Sør-Norge og videre nordover t.o.m. Nordland var avvikelse fra normalen alt i alt ikke så stor (10.-15. varmeste året på 130 år). Men det finnes også enkelte områder hvor temperaturen var 1,4 til $1,9{ }^{\circ} \mathrm{C}$ over normalen (i Hedmark, Oppland, Buskerud, Vestfold, Hordaland og Nord-Trøndelag). I Troms og Finnmark ble det et "vanlig" år. Vanlig betyr at hvert 3. år er i gjennomsnitt like varmt eller varmere.

Gjennomsnittlig var månedstemperaturene i januar, februar og mars høyt over normalene de fleste steder. De største avvikene finnes i område som vanligvis har lite vind og lave temperaturer (for eksempel Oslo-område og Hedmark). I april var temperaturene på det meste av Sør- og Østlandet som vanlig, mens de var under normalen i resten av landet. De fleste steder var gjennomsnittstemperaturen for mai til juli 1997 over normalen (utenom i ytre deler av Finnmark). I juli var temperaturene rekordhøye over det meste av Sør-Norge nordover til Trøndelag. Videre nordover var det også meget varmt. September-temperaturer var også over normalen i hele landet. I Sør-Norge og nordover til Trøndelag var gjennomsnittstemperaturen for januar-august de andre eller tredje høyeste som er forekommet siden 1867. Bare i oktober 1997 var månedstemperaturen under normalen i hele landet, utenom Finnmark (1,0 til $2,0^{\circ} \mathrm{C}$ lavere). I november var det varmere en normalt i Sør-Norge og langs kysten i Nord-Norge. I desember var det stasjoner som fikk månedstemperaturer som var mer en $4{ }^{\circ} \mathrm{C}$ over normalen (i Troms). I hele landet var de over normalen.

1.2. Nedbør

Det falt mer nedbør enn normalt over det meste av landet i 1997. Mest markant var den lange og snørike vinteren i Nord-Norge. Indre deler av Møre og Trøndelag mot Oppland fikk mest nedbør (150%) i forhold til normalen. På Vestlandet falt som vanlig mest nedbør: 3500 til 4000 mm . Dette er ikke mer enn 110 til 120% av normalen.

I januar var det store lokale forskjeller i månedsnedbøren, men i det meste av landet hadde ingen stasjon ekstremt store nedbørmengder over normalen. I februar var nedbøren i Norge, spesielt over store deler av Sør-Norge, godt over normalen. I mars viste nedbørmengdene et skarpt skille: store deler av \emptyset stlandet hadde mindre enn 50% nedbør, mens store deler av Vestlandet og videre nordover til Troms hadde over 200% av normal månedsnedbør. Utenom på det meste av Øst- og Sørlandet var nedbøren i landet over normalen. Med over 600% av månedsnormalen satte to stasjoner i Oppland (som en del andre i område) nye månedsrekorder. Det var rekordstore snødybder i Troms og Finnmark i april. Det skyldes ikke rekordstor nedbør, men lave temperaturer gjennom hele vinteren. Fra mai til juli 1997 var nedbøren under normalen i det meste av landet, utenom i deler av Sør-Norge i juli. Deler av Nordland fikk mindre enn 25\% av normalen, en mengde som sist hadde blitt målt i 1980. Det var store lokale forskjeller i månedsnedbøren, men den var under normalen i meste av landet. Det var store døgnnedbør på flere steder, for eksempel fikk Lista fyr (Vest-Agder) $117,4 \mathrm{~mm}$ den 29. august. Lokale forskjeller i nedbøren var også veldig store i september, men det falt mer nedbør en normalt i litt over halvparten av landet. I oktober var månedsnedbøren over normalen i Midt-Norge og i deler av Troms og Finnmark I november og desember falt det mindre nedbør enn normalt i det meste av landet. Et par områder på Østlandet, Finnmark og Sørlandet fikk mer enn normal månedsnedb $\varnothing \mathrm{r}$ i desember.

1.3. Tilførsel av forurensninger med nedbøren

Tabell 1.1 viser at ioneinnholdet utenom sjøsalter avtar nordover fra Sør-Norge og er minst i fylkene fra Møre og Romsdal til Troms. Tabellen viser videre at alle landsdelene unntatt de indre delene av \emptyset stlandet og Finnmark tilføres betydelige mengder sjøsalter. På noen målesteder gav analysene overskudd av kationer, som trolig skyldes innhold av bikarbonat eller andre anioner av svake syrer som ikke bestemmes.

De høyeste årsmiddelkonsentrasjoner av sterk syre $\left(\mathrm{H}^{+}\right)$, sulfat, nitrat og ammonium ble i 1997 registrert på stasjonene Søgne, Birkenes, Lardal og Lista . I likhet med 1995 og 1996 ligger maksimum noe lengre $ø$ st enn hva som har vært tilfelle de foregående årene, og er trolig forårsaket av en høyere frekvens av lufttransport fra kildeområder til denne delen av landet, eller ved ulike endringer i utslippsmengder ved de ulike kildeområdene (figur 1.1). For ammonium er som tidligere enkelte målestasjoner lokalt påvirket av landbruksaktivitet.

Tabell 1.1 viser også våtavsetningene av de viktigste nedbørkomponentene. Våtavsetningen av sulfat, nitrat, ammonium og sterk syre var størst langs kysten fra Aust-Agder til Hordaland. Våtavsetningen av sulfat på Sørlandet og Vestlandet
var de fleste steder de lavest observerte siden overvåkingen ble igangsatt. Regionale fordelinger av middelkonsentrasjoner og våtavsetninger vist på kart i figur 1.1 og 1.2.

Av figur 1.3 og tabell A.1.2 framgår det at månedsmiddelkonsentrasjonene av sulfat i nedbør i 1997 i Sør-Norge var høyest om sommeren. Ved Birkenes var verdiene også høye i februar og desember. De månedlige våtavsetningene var gjennomgående mindre enn gjennomsnittet for perioden 1986-1996 de fleste steder.

Tabell A. 1.20 viser at våtavsetningene av sulfat tilført i løpet av 10 døgnene med størst avsetning utgjør minst 29% av de totale årlige våtavsetningene. Den høyeste prosentandelen i 1997 hadde stasjonene Kårvatn (43\%), Karasjok (41\%) og Osen (42\%). De største døgnlige våtavsetninger av sulfat ble målt til 68 mg S/m² ved Haukeland (21. august 1997) og $39 \mathrm{mg} \mathrm{S} / \mathrm{m}^{2}$ ved Skreådalen (28. august 1997).
Veide årsmiddelkonsentrasjoner og våtavsetning av nedbørkomponenter på norske bakgrunnsstasjoner, 1997. *: Korrigert for bidraget fra sjøsalt.

Figur 1.1: Middelkonsentrasjoner i nedbør og vaitavsetning av sulfat (sjøsaltkorrigert) og sterk syre ($\mathrm{pH}, \mathrm{H}^{+}$) på norske bakgrunnsstasjoner i 1997.

Figur 1.2: Middelkonsentrasjoner i nedbør av nitrat, ammonium og natrium, og våtavsetning av total nitrogen (nitrat + ammonium) på norske bakgrunnsstasjoner i 1997.

Figur 1.3: Månedlige våtavsetninger og middelkonsentrasjoner av sulfat (sjøsaltkorrigert) på norske bakgrunnsstasjoner i 1997 og tidligere àr (middelverdier).

[^0]* 1997-verdier for Karasjok; 1987-1996-verdier for Jergul.

Figur 1.3 forts.

1.3. Tidsutvikling

Utenom Vikedal var det en \varnothing kning i pH verdiene i alle steder i 1997 sammenlignet med 1996, og generelt var H^{+}-konsentrasjonene de laveste siden NILU startet med målinger i 1970- eller 1980-årene (figur 1.4 og vedlegg A.1.21). Det var også nedgang i sulfat konsentrasjonen på nesten alle stasjoner, delvis med rekordlave tall (figur 1.4). Bare på fire steder $ø \mathrm{kte}$ sulfatverdiene litt: på Lardal, Ualand, Vikedal og Svanvik. Nedbørens innhold av nitrogenforbindelser var de fleste steder omtrent på samme nivå som de foregående år.

Årsmiddelkonsentrasjonene av sulfat og sterk syre \emptyset kte stort sett fram til slutten av 1970-årene, og har deretter avtatt. Konsentrasjonene har avtatt mest i SørNorge; men de relative reduksjonene $ø$ ker mot nord. Innholdet av nitrat og ammonium har endret seg lite siden 1970-årene. Av figur 1.5, med veide gjennomsnittsverdier for 7 representative målesteder på Sørlandet og Østlandet, fremgår det også at det har vært en generell reduksjon av nedbørens sulfatinnhold siden slutten av 1970-årene, mens innholdet av nitrat og ammonium har gjennomgående vært på samme nivå. Nitrogenavsetningen har imidlertid vært vesentlig lavere på 1990-tallet enn i slutten av 1980-årene. Disse observasjonene samsvarer godt med de rapporterte endringer i utslipp.

Årsmiddelkonsentrasjonene av sulfat, nitrat, ammonium og magnesium er testet med hensyn på eventuelle trender for 12 målesteder med lange dataserier (tabell 1.2). Det er anvendt Mann-Kendall's test som er ikke-parametrisk og derfor uavhengig av fordelingen av data (Gilbert, 1987). Beregning av midlere endring i de årlige middelkonsentrasjoner er basert på lineær regresjon hvor helningskoeffisienten ligger innen Sen's ikke-parametriske helningsestimator (Gilbert, 1987).

Årsmiddelkonsentrasjonene av sulfat i nedbør har avtatt signifikant siden 1980 på alle målesteder unntatt Ny - \AA lesund, med midlere reduksjoner mellom $0,008 \mathrm{mg}$ $S \cdot 1^{-1} \cdot a ̊ r^{-1}$ og $0,036 \mathrm{mg} \mathrm{S} \cdot \mathrm{I}^{-1} \cdot \mathrm{a}^{-1}$. I perioden 1980-1997 var den gjennomsnittlige reduksjon i sulfatkonsentrasjoner på fastlandsstasjonene mellom 43 og 62%.

Årsmiddelkonsentrasjonene av nitrat har ikke endret seg signifikant siden 1980 ved noen av målestasjonene (tabell 1.2, figur 1.4, figur 1.5). For ammonium har det vært en signifikant reduksjon ved tre målestasjoner (Birkenes, Treungen og Løken), mens det har vært en $\emptyset \mathrm{kning}$ ved Tustervatn og Ny - \AA lesund. Endringer i konsentrasjonene av ammonium antas å være forårsaket av endring i bidraget fra lokale kilder.

Sjøsaltinnholdet i nedbøren (representert ved magnesium) viser signifikant \varnothing kning i perioden på kyststasjonen Lista. Innholdet av sjøsalter i nedbøren påvirkes sterkt av de meteorologiske forhold og varierer av den grunn mye fra år til år. I løpet av de første årene på nitti-tallet ble det målt høye konsentrasjoner av sjøsalter (se også A.1.21) grunnet ekstremt milde vintre med ustabile luftmasser fra vest. Høyt sjøsaltinnhold i nedbøren skyldes som regel sterk pålandsvind. Det var i årene 1994-1997 gjennomgående lavere innhold av sjøsalter i nedbøren enn de foregående 4-5 årene.

Tabell 1.2: \quad Midlere endringer av de årlige middelkonsentrasjoner av sulfat (sjøsaltkorrigert) i nedbør på norske bakgrunnsstasjoner, og målesteder med signifikante endringer for nitrat, ammonium og magnesium i perioden 1980-97.

		Endring, mg S/l pr. år			Midlere \% endring for perioden	Signifikante endringer i perioden for		
Målested	Periode	Helning Median	Nedre grense	Øvre grense		NO_{3}	NH_{4}	Mg
Birkenes	1980-97	-0,036	-0,046	-0,024	-52		-	
Lista	1980-97	-0,028	-0,040	-0,018	-44			+
Skreådalen	1980-97	-0,014	-0,024	-0,007	-43			
Treungen	1980-97	-0,026	-0,034	-0,020	-46		**	
Vatnedalen	1980-97	-0,013	-0,019	-0,005	-48			
Laken	1980-97	-0,034	-0,045	-0,024	-55		-	
Gulsvik	1980-97	-0,030	-0,040	-0,019	-53			
Haukeland	1982-97	-0,015	-0,022	-0,005	-50			
Kárvatn	1980-97	-0,008	-0,014	-0,003	-56			
Tustervatn	1980-97	-0,009	-0,014	-0,004	-62		+	
Jergul/Karasjok	1980-97	-0,018	-0,027	-0,008	-61		-*	
Ny -Ålesund	1981-97	ikke signi	kant endr				+*	

Det er anvendt Mann-Kendalls test og Sen's estimater av trender ved 99% konfidensnivå (Gilbert, 1987). Beregning av midlere endring for perioden er basert pá lineær regresjon hvor helningskoeffisienten ligger innen Sen's trend estimator. + = økning, = = reduksjon, * $=95 \%$ konfidensnivå.

Endringene av nedbørens innhold av svovel- og nitrogenkomponenter er i rimelig samsvar med de rapporterte endringer i utslipp i Europa. Utslippene av svoveldioksid er redusert med over 48% fra 1980 til 1995 (Berge et al., 1997). Utslippsreduksjonen har vært størst i de vestlige land, men også i øst er reduksjonene på over 30%. Som følge av internasjonale avtaler forventes utslippene å reduseres ytterligere frem mot år 2000, 2005 og 2010. For nitrogenoksider er det foreløpig kun inngått avtale om at utslippene i 1994 ikke skal $\emptyset k$ i forhold til de nasjonale utslipp i 1987. Fra 1980 til 1995 var det imidlertid i Vest-Europa en reduksjon i utslippene av nitrogenoksider på ca. 9% (Berge et al., 1997). Utslippene av ammoniakk har også $\varnothing \mathrm{kt}$ siden 1950 -årene i sammenheng med veksten i landbruksproduksjonen og et mer intensivt husdyrhold i Europa. Før 1990 var utslippene av ammoniakk stabile, mens de avtok med ca. 15\% fra 1990 til 1995.

Flere forhold gjør det vanskelig å korrelere reduksjoner i utslipp med målte konsentrasjoner og avsetninger. Av størst betydning er de meteorologiske forhold, som bestemmer spredning av forurensninger til atmosfæren, kjemiske transformasjoner, transport og avsetning av forurensninger. Store variasjoner i konsentrasjoner og avsetninger kan være forårsaket av luftmassenes opphav, vindstyrke, nedbørmengde og varierende topografi.

Våtavsetningen av sulfat var i 1997 på de fleste stasjoner i Sør-Norge de lavest målte siden NILU startet overvåking av luft og nedbørkvalitet tidlig på 70-tallet (figur 1.5 og figur 1.6). I slutten av 1980 -årene var årsnedbøren i Sør-Norge til dels stor og dette har medført at våtavsetningen av sulfat har avtatt relativt mindre enn middelkonsentrasjonene i denne perioden. I Midt- og Nord-Norge var våtavsetningene av sulfat i 1997 langs kysten høyere og i innlandet lavere som de foregående år.

Figur 1.4: Veide årsmiddelkonsentrasjoner av sulfat (sjøsaltkorrigert), nitrat, ammonium og pH-middelverdier i nedbør på norske bakgrunnsstasjoner, 1973-1997.

Figur 1.4 forts.

Figur 1.4 forts.

Figur 1.5: Veide årsmiddelkonsentrasjoner av sulfat (sjøsaltkorrigert), nitrat og ammonium, gjennomsnittlige årlige nedbørmengder og våtavsetninger av sulfat og sum (nitrat+ammonium) 1974-1997 for 7 representative stasjoner på Sørlandet og \emptyset stlandet: Birkenes, Lista, Skreådalen, Vatnedalen, Treungen, Gulsvik og Løken.

Figur 1.6: Årlige våtavsetninger av sulfat på norske EMEP-stasjoner, 19731997.

2. Sporelementer i nedbør

Fra februar 1980 har det vært bestemt bly, sink og kadmium i ukentlige nedbørprøver fra de fem stasjonene Birkenes, Narbuvoll (til 1987), Osen (fra 1988), Kårvatn og Jergul (til januar 1997), som et ledd i SFTs overvåkingsprogram. Stasjonen Jergul ble flyttet til Karasjok (fra januar 1997). Slike målinger er dessuten utført på Nordmoen i Akershus fra oktober 1986 til april 1997 og på Svanvik i Sør-Varanger fra mars 1987 som ledd i "Overvåkingsprogram for skogskader". I tilknytning til "Program for terrestrisk naturovervåkning i Norge" utfører NILU analyse av bly, kadmium og sink i månedsprøver fra stasjonene Ualand, Møsvatn, Valdalen, Namsvatn og Solhomfjell. Stasjonene Namsvatn og Solhomfjell ble nedlagt 1. april 1997. Nedbørprøvene fra Svanvik, Ualand, Solhomfjell, Møsvatn, Valdalen og Namsvatn analyseres også med hensyn på nikkel, arsen, kopper, kobolt og krom.

For komponentene Ni , As, Co og Cr er ofte konsentrasjonene lavere enn deteksjonsgrensene. Deteksjonsgrensene er bestemt som 3 ganger standard avvik av blindprøveverdier. For prøver der konsentrasjonene er lavere enn deteksjonsgrensen er det benyttet halve deteksjonsgrensen ved beregning av veide middelkonsentrasjoner og ved beregning av våtavsetning. Dersom den beregnede verdi er lavere enn den respektive deteksjonsgrensen, er den veide middelverdi satt mindre enn deteksjonsgrensen. Årsmiddelkonsentrasjoner og våtavsetninger bestemt for
elementer der en eller flere måneder ligger lavere enn deteksjonsgrensen må av den grunn ikke benyttes ukritisk.

Opplysninger om prøvetaking og analysemetoder er gitt i vedlegg C. Årsverdiene er gitt i tabell 2.1 og 2.2, og målingene er presentert som veide middelkonsentrasjoner og våtavsetninger på måneds- og årsbasis i vedlegg A.2.1-A.2.17.

Tabell 2.1 viser at de høyeste årsmiddelkonsentrasjoner av bly ble målt på stasjonene Lista, Birkenes, Møsvatn og Ualand. Den høyeste årlige kadmiumkonsentrasjon ble målt på Svanvik, sinkverdien var høyest på Valdalen. Det høyeste nivået av nikkel, arsen, kobolt og kopper ble imidlertid målt i ØstFinnmark (Svanvik) grunnet nærliggende utslippskilder i Russland. Årsmiddelkonsentrasjoner av krom var for de fleste \varnothing vrige stasjoner under deteksjonsgrensen ($0,2 \mu \mathrm{~g} \cdot \mathrm{I}^{-1}$). Årsmiddelkonsentrasjonen av nikkel og kopper i Svanvik var i 1997 hhv. 17,3 og $21,4 \mu \mathrm{~g} \cdot \mathrm{l}^{-1}$ mot 0,38 og $0,98 \mu \mathrm{~g} \cdot \mathrm{l}^{-1}$ som var maksimum i Sør-Norge (Lista). De høye verdiene i Sør-Varanger skyldes store industriutslipp på Kolahalvøya.

Tabell 2.2 viser at våtavsetningen av bly, kadmium og sink i 1997 var størst på Birkenes, Ualand og Lista. Våtavsetningene av nikkel, arsen, kopper og kobolt var størst i Øst-Finnmark, mens avsetningen av krom var størst på Lista.

I figur 2.2 og vedlegg A. 2.17 er årsmiddelkonsentrasjonene fra 1980 til 1997 samt tidligere data fra 1976 (Semb, 1978) og fra 1978 (Hanssen et al., 1980) sammenstilt. Blyinnholdet i nedbør har avtatt med $60-80 \%$ siden 1978. I 1988 hadde imidlertid blyinnholdet et maksimum, og årsverdiene har deretter avtatt sterkt i hele landet.

Innholdet av sink har avtatt med ca. 70% siden 1978. På Birkenes avtok årsmiddelkonsentrasjonene markert fra 1978 til 1981, men har deretter stort sett vært økende til 1988. Kårvatn og Jergul viser ingen markert tendens før 1988. Sinkinnholdet har avtatt på alle målestedene etter 1988, men nivåene i 1996 og 1997 var for de fleste lokaliteter noe høyere enn i de foregående år. Dette kan være forårsaket av at sink er spesielt utsatt for kontaminering og påvirkning fra lokale kilder. Dette er trolig forklaringen for de uventet høye verdiene som observeres på enkelte stasjoner (f. eks. Valdalen).

Kadmiuminnholdet har avtatt med $50-80 \%$ siden slutten av 1970 -årene, og endringen har vært størst på Birkenes. Ellers utpeker enkelte høye årsverdier seg (Birkenes 1982, Osen 1988), noe som kan skyldes lokale kilder eller eventuelt kontaminering.

Tabell 2.1: Årlige veide middelkonsentrasjoner ($\mu \mathrm{g} / \mathrm{l})$ av tungmetaller $p \mathrm{a}$ norske bakgrunnsstasjoner, 1997.

Stasjon	Pb	Cd	Zn	Ni	As	Cu	Co	Cr
Birkenes	1,73	0,03	4,16					
Lista	7,50	0,05	6,59	0,38	0,48	0,98	0,04	0,16
Møsvatn	1,02	0,02	4,45	0,37	0,10	1,01	0,02	0,10
Hurdal	1,25	0,06	5,35					
Osen	0,93	0,02	3,96					
Valdalen	1,12	0,05	-	0,36	0,07	1,08	0,02	0,16
Ualand	1,34	0,02	4,55	0,15	0,11	0,35	0,01	0,10
Kảrvatn	0,49	0,01	1,56					
Øverbygd	0,49	0,01	2,69	0,14	0,09	0,31	0,01	0,10
Karasjok	0,63	0,02	3,10					
Svanvik	1,88	0,11	3,84	17,34	1,78	21,40	0,57	0,29

Tabell 2.2: A rlige våtavsetninger ($\mu \mathrm{g} / \mathrm{m}^{2}$) av tungmetaller på norske bakgrunnsstasjoner, 1997.

Stasjon	Pb	Cd	Zn	Ni	As	Cu	Co	Cr
Birkenes	2057	38	4934					
Lista	9144	64	8032	463	590	1194	43	189
Møsvatn	651	15	2804	229	66	637	15	59
Hurdal	137	41	4239					
Osen	660	15	2817				12	112
Valdalen	775	33	-	247	46	744	25	178
Ualand	2408	36	4668	277	197	637		
Kårvatn	1215	14	2743				7	59
Øverbygd	278	5	1530	79	50	176		
Karasjok	127	5	628				156	81
Svanvik	514	45	1104	4796	497	6002		

Figur 2.1: Månedlige veide middelkonsentrasjoner av bly, kadmium og sink i nedbør på norske bakgrunnsstasjoner, 1997.

Figur 2.2: Årlige middelkonsentrasjoner av bly, kadmium og sink i nedbør på norske bakgrunnsstasjoner i 1976, august 1978-juni 1979, 1980 (februar-desember) og 1981-1997.

3. Innholdet av svovel- og nitrogenforbindelser i luft

Det ble utført luftprøvetaking av svovel og nitrogenforbindelser i bakgrunnsområder på 13 steder i 1997. Stasjonene inngår i "Program for overvåking av langtransportert forurenset luft og nedbør", "Overvåkingsprogram for skogskader", samt "Arktisk måleprogram" ved Ny-Ålesund/Zeppelinfjellet. Prøvetakingen utføres døgnlig eller tre ganger ukentlig (2,2 og 3 døgns prøvetaking). På Birkenes og Hurdal bestemmes også innholdet av kalsium, kalium, natrium, magnesium og klorid i luft.

Måleprogrammet for de forskjellige stasjonene er presentert i vedlegg B.2, prøve-takings- og analysemetoder i vedlegg C, og måleresultater på måneds- og årsbasis i vedlegg A.3.1-A.3.10.

3.1. Luftens innhold av forurensninger

Tabellene 3.1 til 3.5 viser data for luftkonsentrasjonene på hver stasjon. Data fra stasjonene med 2, 2 og 3 døgns prøvetaking av $\mathrm{SO}_{2}, \mathrm{SO}_{4},\left(\mathrm{NO}_{3}+\mathrm{HNO}_{3}\right)$, $\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$ (se vedlegg B2) er ikke direkte sammenlignbare med stasjonene med døgnlige data, bortsett fra middelverdiene.

Årsmiddelkonsentrasjonene av svoveldioksid og sulfat i luft var høyest langs kysten i Sør-Norge og i Finnmark. Den markert høyeste årsmiddelverdien av svoveldioksid i 1997 og den høyeste maksimumsverdien (hhv. 4,85 og 41,87 $\mu \mathrm{g}$ $\mathrm{S} \cdot \mathrm{m}^{-3}$) ble registrert på Svanvik i Sør-Varanger. Dette skyldes utslippskilder på Kolahalvøya i Russland. Til sammenligning ble den høyeste årsmiddelkonsentrasjonen av svoveldioksid i Sør-Norge målt til $0,47 \mu \mathrm{~g} \mathrm{~S} \cdot \mathrm{~m}^{-3}$ ved Søgne. Også de høyeste konsentrasjonene av partikulært sulfat, og "sum nitrat" ble i 1997 målt i Søgne. Søgne antas å påvirkes både av tilførsel fra Kristiansand-området og lokale kilder i tillegg til langtransportert forurensning.

Nordmoen hadde i 1997 høyeste årsmiddelverdi og døgnmiddelverdi av nitrogendioksid (hhv. 2,01 og $12,10 \mu \mathrm{~g} \mathrm{~N} \cdot \mathrm{~m}^{-3}$). Månedsverdiene for NO_{2} var høyest i vintermånedene, særlig på Nordmoen og i Søgne, noe som sannsynligvis skyldes lokale utslipp, spesielt fra biltrafikk, og meteorologiske forhold.

Høyest årsmiddelverdi og døgnmiddelverdi for "sum ammonium" hadde Skreådalen og Tustervatn med hhv. 1,41 og $12,16 \mu \mathrm{~g} \mathrm{~N} \cdot \mathrm{~m}^{-3}$. Dette skyldes påvirkning fra lokal landbruksaktivitet. Det ble også målt enkelte høye døgnmiddelkonsentrasjoner ved de fleste andre stasjoner.

Årsmiddelkonsentrasjonene av svoveldioksid og "sum nitrat" på Zeppelinfjellet lå omtrent på samme nivå som de minst forurensede stasjoner på fastlandet (Kårvatn og Tustervatn). De $ø$ vrige årsverdiene på Zeppelinfjellet var lavere enn på fastlandet.

Figur 3.1 viser at SO_{2}-verdiene gjennomgående var høyest i vintermånedene, med unntak av Svanvik, som også hadde høye verdier i sommerhalvåret. Sulfatverdiene var høyest i mars-april i hele landet. Høyeste nivåer av "sum nitrat" $\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}{ }^{-}\right)$ble de fleste steder målt i januar, august og november. I Midt- og Nord-Norge var nivåene lave, og det var ingen tydelig variasjon gjennom året. "Sum ammonium" $\left(\mathrm{NH}_{3}+\mathrm{NH}_{4}{ }^{+}\right)$viste høyeste nivå i vår- og sommermånedene. Dette kan skyldes både påvirkning fra lokale ammoniakkutslipp og langtransportert tilførsel. Som vist i tabell 3.4 og 3.5 ble maksimumsnivået av "sum ammonium" i Sørøst-Norge registrert fra august til september og maksimumsnivået av "sum nitrat" fra januar til april.

Konsentrasjonene av $\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}$ er som regel vesentlig høyere enn $\mathrm{NO}_{3}+{ }^{-}+\mathrm{HO}_{3}$, mens middelkonsentrasjonene av nitrat og ammonium i nedbør er omtrent like store. I tillegg til ammoniakk fra lokale kilder kan denne forskjellen også ha
sammenheng med at tørravsetningshastigheten av HNO_{3}-gass og av nitrataerosoler (en stor del som NaNO_{3}) er større enn for ammoniumsulfataerosoler (mindre partikkeldiameter). Dette kan føre til at konsentrasjonene av $\mathrm{NO}_{3}{ }^{-}$og HNO_{3} blir vesentlig lavere ved bakken enn i den frie troposfæren, og i større grad enn for $\mathrm{NH}_{4}{ }^{+}$og NH_{3}. I tillegg kan utvasking av nitrat med nedbør være mer effektiv enn for ammonium, samtidig som oppsamling av store nitratpartikler er vanskelig og kan medføre underestimering av nitratkonsentrasjoner.

I tabell 3.6 er presentert estimater av de totale tørravsetningene av svovel- og nitrogenkomponenter og målte våtavsetninger, separat for wekstsesongen maioktober (sommer) og for vintermånedene januar-april og november-desember 1996. Tørravsetningen er kalkulert på basis av middelkonsentrasjonene i luft av $\mathrm{SO}_{2}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{NO}_{2}$, sum nitrat $\left(\mathrm{NO}_{3}+\mathrm{HNO}_{3}\right)$ og sum ammonium $\left(\mathrm{NH}_{4}^{+}+\mathrm{NH}_{3}\right)$ og avsetningshastigheter gitt i tabellteksten (Dovland og Eliassen, 1976; Dollard og Vitols, 1980; Fowler, 1980; Garland, 1978; Voldner og Sirois, 1986; Hicks et al., 1987). I "sum nitrat" antas HNO_{3} å bidra med 25% og $\mathrm{NO}_{3}{ }^{-}$med 75%, og i "sum ammonium" antas NH_{3} å bidra med 8% og $\mathrm{NH}_{4}{ }^{+}$med 92% (Ferm, 1988).

Avsetningshastighetene av gasser og partikler er sterkt variable og usikre størrelser. Avsetningen av partikler $\left(\mathrm{SO}_{4}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NH}_{4}{ }^{+}\right)$tiltar med vindhastigheten og med bakkens ruhet (skogdekning etc.). Avsetningen av gasser ($\mathrm{SO}_{2}, \mathrm{NO}_{2}$, $\mathrm{HNO}_{3}, \mathrm{NH}_{3}$) avhenger av den fotosyntetiske aktivitet i vegetasjonen, samt av overflatetype (vann, fjell, etc.). Avsetningen er for de fleste gasser langt større på våte overflater enn når flatene er tørre. Om vinteren er avsetningen liten på grunn av lav biologisk aktivitet i vegetasjonen, samtidig som bakken er dekket av sn \varnothing og is. Det stabile luftlaget nær bakken om vinteren reduserer dessuten transporten av forurensninger ned mot bakken.

Figur 3.2 viser at våtavsetningen bidrar mest til den totale avsetningen i alle landsdeler, unntatt i Finnmark. De store tørravsetningsbidragene av nitrogenforbindelser på Birkenes, Søgne og Skreådalen skyldes delvis lokale ammoniakkutslipp, mens bidraget ved Søgne skyldes også lokale utslipp av nitrogenoksider fra biltrafikk.

Av tabell 3.6 framgår det at tørravsetningen av svovel- og nitrogenkomponenter er beregnet til å være markert større om sommeren enn om vinteren i alle landsdelene. Bidraget av tørravsatt svovel til den totale avsetning var 17-84\% om sommeren og $5-75 \%$ om vinteren i alle landsdeler unntatt Finnmark. I Finnmark er tørravsetningsbidraget meget høyt særlig i Svanvik på grunn av høye luftkonsentrasjoner og lite nedbør. Tørravsetningen for nitrogenkomponenter bidrar for det meste relativt mer til totalavsetningen enn hva som er tilfelle for svovelforbindelser, især om sommeren.

Tabell 3.1: Antall observasjonsd ϕ gn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av SO_{2} i luft på norske bakgrunnsstasjoner i 1997.
Eks.: På Birkenes var 75\% av SO_{2}-konsentrasjonene lavere enn $0,27 \mu_{\mathrm{g}} \mathrm{S} / \mathrm{m}^{3}$.

Tabell 3.2: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av sulfat i luft på norske bakgrunnsstasjoner i 1997.

Stasjon	Antall døgn	$\mathrm{SO}_{4}\left(\mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3}\right)$					
		50\%	Prosentilk 75\%	90\%	Maksimumkonsentrasjon	Dato	Årsmiddelkonsentrasjon
Birkenes	356	0,34	0,78	1,19	5,25	9. aug	0,53
Søgne	275	0,54	0,92	1,24	2,36	7. apr	0,63
Skreådalen	359	0,26	0,54	0,99	3,24	28. apr	0,42
Prestebakke	365	0,44	0,72	1,11	1,74	20. aug	0,54
Hurdal	312	0,36	0,53	0,88	1,77	11. aug	0,41
Gulsvik	351	0,21	0,37	0,78	1,90	13. aug	0,31
Osen	359	0,19	0,40	0,74	2,18	18. aug	0,30
Kårvatn	364	0,13	0,25	0,48	3,03	18. aug	0,22
Tustervatn	361	0,19	0,34	0,56	2,70	18. aug	0,27
Karasjok	344	0,20	0,42	0,75	2,49	5. mai	0,33
Svanvik	363	0,38	0,64	0,97	2,61	23. apr	0,49
Zeppelinfj.	294	0,16	0,29	0,47	3,33	3. aug	0,19

Tabell 3.3: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av NO_{2} i luft på norske bakgrunnsstasjoner i 1997.

Stasjon	Antall døgn	$\mathrm{NO}_{2}\left(\mu \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}\right)$					
		50\%	$\begin{gathered} \text { sentilko } \\ 75 \% \end{gathered}$	90\%	Maksimumkonsentrasjon	Dato	Ársmiddelkonsentrasjon
Birkenes	364	0,44	0,84	1,41	11,51	17. jan	0,69
Sagne	361	0,88	1,37	2,02	6,37	17. jan	1,11
Skreådalen	365	0,35	0,59	0,89	7,05	12. jan	0,53
Nordmoen	353	1,30	2,51 ${ }^{\text { }}$	4,83	12,10	18. jan	: 2,01
Hurdal	360	0,60	1,32	2,52	11,43	6. des	1,10
Osen	364	0,32	0,54	0,98	9,53	18. jan	0,48
Kárvatn	365	0,19	.0,34	0,51	2,05	12. jan	0,25
Tustervatn	362	0,13	0,21	0,34	1,66	11. des	0,18
Karasjok	353	0,16	0,26	0,39	0,87	30. aug	0,20
Svanvik	354	0,42	0,71	1,30	0,50	1. jan	0,59

Tabell 3.4: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av sum nitrat og salpetersyre iluft på norske bakgrunnsstasjoner i 1997.

Tabell 3.5: Antall observasjonsdøgn, 50, 75, 90 prosentil-konsentrasjoner, maksimum- og årsmiddelverdier for målte middelkonsentrasjoner (1-3 døgn, se vedlegg C) av sum ammonium og ammoniakk i luft på norske bakgrunnsstasjoner i 1997.

Tabell 3.6: Beregnet tørravsetning og målt våtavsetning av svovel- og nitrogenforbindelser på norske bakgrunnsstasjoner i 1997.

Tørravsetning $=$ målt midlere luftkonsentrasjon \cdot antatt tørravsetningshastighet.
Tørravsetningshastigheter: $\mathrm{SO}_{2}: 0.1 \mathrm{~cm} / \mathrm{s}$ (vinter) $-0.7 \mathrm{~cm} / \mathrm{s}$ (sommer). $\mathrm{SO}_{4}: 0.2-0.6 \mathrm{~cm} / \mathrm{s}$, $\mathrm{NO}_{2}: 0.1-0.5 \mathrm{~cm} / \mathrm{s}, \mathrm{HNO}_{3}: 1.5-2.5 \mathrm{~cm} / \mathrm{s}, \mathrm{NO}_{3}: 0.2-0.6 \mathrm{~cm} / \mathrm{s}, \mathrm{NH}_{4}: 0.2-0.6 \mathrm{~cm} / \mathrm{s}, \mathrm{NH}_{3}: 0.1-0.7 \mathrm{~cm} / \mathrm{s}$.
Sum nitrat $=25 \% \mathrm{HNO}_{3}+75 \% \mathrm{NO}_{3}$. Sum ammonium $=8 \% \mathrm{NH}_{3}+92 \% \mathrm{NH}_{4}$.
$\%$-verdiene angir tørravsetningens bidrag til den totale avsetning for vinter (V) og sommer (S).
Sommer $=$ mai - oktober, vinter $=$ januar - april og november - desember.

Stasjon	Svovel ($\mathrm{mg} \mathrm{S} / \mathrm{m}^{2}$)						Nitrogen ($\mathrm{mg} \mathrm{N} / \mathrm{m}^{2}$)							
	Tørravsetning vinter sommer		Vătavsetning vinter sommer		\% torravsetning		Tørravsetning		Vâtavsetning		$\begin{gathered} \% \\ \text { tørravsetning } \end{gathered}$			
Birkenes	19	81			382	266	5	23	52	155	722	454	7	25
Sagne	30	93	428	381	7	20	94	210	905	589	9	26		
Skreådalen	14	59	265	242	5	19	65	215	586	494	10	30		
Prestebakke	21	76	179	193	11	28	-	-	288	278	.	-		
Hurdal	14	51	104	151	12	25	60	134	210	234	22	36		
Gulsvik	10	42	79	168	12	20	-	-	204	251	-	-		
Osen	10	38	50	110	17	25	30	78	106	168	22	32		
Kårvatn	6	31	101	72	5	30	16	113	140	181	10	38		
Tustervatn	9	35	71	51	11	41	36	164	225	148	14	53		
Karasjok	21	59	10	22	68	73	11	34	23	28	32	55		
Svanvik	98	539	33	100	75	84	41	104	42	80	49	57		
Zeppelinfj.	10	17	47	82	18	17	-	-	40	152	-	-		

For Zeppelinfjellet er våtavsetningene i Ny-Ålesund anvendt.

Figur 3.1: Månedlige middelkonsentrasjoner av svoveldioksid, partikulart sulfat, nitrogendioksid, (ammonium+ammoniakk) og (nitrat+salpetersyre) i luft på norske bakgrunnsstasjoner i 1997.

Figur 3.1 forts.

Figur 3.2: \quad Total avsetning (våt- og tørravsetning) av svovel-S $\left(\mathrm{SO}_{2}, \mathrm{SO}_{4}{ }^{2-}\right)$ og nitrogen- $\mathrm{N}\left(\mathrm{NO}_{2}, \mathrm{NH}_{4}{ }^{+}, \mathrm{NH}_{3}, \mathrm{NO}_{3}{ }^{-}, \mathrm{HNO}_{3}\right)$ på norske bakgrunnsstasjoner, 1997.

3.2. Tidsutvikling

Vedlegg A.3.11 og figurene 3.3 og 3.4 viser variasjonene av årsmiddelkonsentrasjonene av partikulært sulfat og svoveldioksid siden henholdsvis 1973 og 1978.

Årsmiddelkonsentrasjonene av svoveldioksid er i stor grad påvirket av variasjoner i vær og klima. Stort sett avtok konsentrasjonene sterkt fra 1978 til 1983, økte svakt fra 1983 til 1987 og har siden avtatt. Årsverdiene for partikulært sulfat har hatt et lignende forløp, men med et maksimum i 1984 og ellers mindre variasjoner fra år til år. Det var for alle målestedene på lavere konsentrasjonsnivåer av svoveldioksid og sulfat i 1997, unntatt Svanvik og Karasjok, hvor nivåene var høyere sammenlignet med 1996.

Figur 3.3: Årsmiddelkonsentrasjoner av partikulært sulfat i luft på norske bakgrunnsstasjoner i 1973-1997.

Figur 3.4: Årsmiddelkonsentrasjoner av svoveldioksid i luft på norske bakgrunnsstasjoner i 1978-1997.

Det er som for nedbør, utført en trendanalyse av årsmiddelkonsentrasjonene av svovelkomponenter i luft på seks stasjoner med lange måleserier ved hjelp av Mann-Kendall's test og Sen's estimater for helning (Gilbert, 1987). Tabell 3.7 viser at årsmiddelkonsentrasjonene på fastlandsstasjonene siden 1980 har hatt en signifikant midlere reduksjon mellom 0,015 og $0,037 \mu \mathrm{~g} \mathrm{~S} \mathrm{~m}{ }^{-3} \mathrm{a}^{-1} \mathrm{r}^{-1}$ for svoveldioksid og mellom 0,015 og $0,032 \mu \mathrm{~g} \mathrm{~S} \mathrm{~m}{ }^{-3}$ a r^{-1} for sulfat. Reduksjonene er for svoveldioksid med 1980 som referanseår, beregnet til å være mellom 49 og 81%, og for sulfat mellom 45% og 58%. Endringen i svoveldioksid- og sulfatkonsentrasjonene ved Ny -Ålesund har vært på $-0,014$ og $-0,012 \mu \mathrm{~g} \mathrm{~S} \mathrm{~m}-3 \cdot{ }^{-1} \mathrm{r}^{-1}$ (hhv. 58 og 54% midlere reduksjon siden 1980).

Tabell 3.7: \quad Midlere endringer av de årlige middelkonsentrasjoner av svoveldioksid og partikulart sulfat i luft på norske bakgrunnsstasjoner i perioden 1980-97.

	Svoveldioksid, endringer				Sulfat, endringer			
	$\mu \mathrm{g} \mathrm{SO} 2$ - $\mathrm{S}^{\prime} \mathrm{m}^{3} \mathrm{ar}$			Midlere endring i perioden (\%)	$\mu \mathrm{g} \mathrm{SO} 4$ - $\mathrm{S} / \mathrm{m}^{3}$ 'år			Midlere endring i perioden (\%)
Mảlested	Helning median	Nedre grense	Øvre grense		Helning median	Nedre grense	\varnothing vre grense	
Birkenes	-0,037	-0,050	-0,025	-62	-0,032	-0,053	-0,022	-45
Skreådalen	-0,044	-0,063	-0,025	-77	-0,032	-0,046	-0,022	-52
Kårvatn	-0,015	-0,022	-0,009	-49	-0,015	-0,022	-0,009	-49
Tustervatn	-0,035	-0,052	-0,010	-81	-0,020	-0,035	-0,010	-52
Jergul/Karasjok	-0.060	-0.099	-0.017	-71	-0.027	-0.048	-0.010	-58
Ny -Ålesund	-0,014	-0,023	-0,009	-58	-0,012	-0,012	-0,003	-54

Det er anvendt Mann-Kendalls test ved 99\% konfidensnivå og Sen's estimater av trender ved 99\% konfidensnivå (Gilbert, 1987). Beregning av midlere endring for perioden er basert pả lineær regresjon hvor helningskoeffisienten ligger innen Sen's trend estimator. + = økning, $==$ reduksjon.

Årsmiddelkonsentrasjonene av nitrogendioksid, summen av nitrat+salpetersyre samt summen av ammonium+ammoniakk i luft viser ingen markerte tendenser siden målingene startet i 1984.

Av figur 3.5 framgår det at vinterverdiene av svoveldioksid er utslagsgivende for variasjonen av årsmiddelkonsentrasjonene. Dette skyldes at det om vinteren kan være perioder med høye konsentrasjoner på grunn av kulde med lav blandingshøyde under transporten fra Europa, samtidig som transformasjonshastigheten av SO_{2} til SO_{4} er liten. Årsmiddelkonsentrasjoner av svoveldioksid og sulfat i $\mathrm{S} ø \mathrm{r}$ Norge påvirkes i stor grad av antall stagnasjonsperioder om vinteren i Europas innland med påfølgende lufttransport fra sør og sørøst til Norge (SFT, 1986a). Årsmiddelkonsentrasjonene av svoveldioksid og partikulært sulfat har de senere år gjennomgående vært lave delvis på grunn av mildt og ustabilt vinterklima. De siste vintrene har i Sør-Norge imidlertid ikke vært mildere enn normalt, mens konsentrasjonsnivåene gjennomgående var blant de lavest målte ved de fleste stasjoner. Dette er en klar indikasjon på at reduserte utslipp er den viktigste årsaken til den observerte reduksjonen de siste årene.

Figur 3.5: Middelkonsentrasjoner av partikulart sulfat og svoveldioksid i luft for vinterhalvårene 1978/1979-1996/1997 (oktober-mars) og sommerhalvårene 1978-1997 på Birkenes og Jergul/Karasjok.

4. Bakkenært ozon

Ozon og andre fotokjemiske oksidanter dannes ved kjemiske reaksjoner mellom oksygen, flyktige organiske forbindelser og nitrogenoksider under påvirkning av solstråling. Ozon er den viktigste av oksidantene og forekommer i størst mengde. Ozon har negative virkninger på helse, vegetasjon og materialer. Helsevirkningene gjelder særlig for astmatikere og andre med kroniske luftveislidelser. Virkninger på vegetasjon gjelder særlig for nyttevekster som grønnsaker og korn. Ved langvarig eksponering er det påvist negative virkninger på skog. Materialer som gummi og andre polymerforbindelser kan også skades av ozon. Ozon i troposfæren har et varierende bakgrunnsnivå og forekommer dessuten episodisk i høye konsentrasjoner. Bakgrunnsnivået er som oftest lavere enn grenseverdiene for luftkvalitet, men likevel nærmere grenseverdiene enn for de fleste andre luftforurensninger.

Målinger av ozon i Norge har foregått siden 1975, først i nedre Telemark, og fra 1977 også i Oslofjord-området. Siden midten av 1980-tallet har antall målesteder $\not \mathrm{kt}$, særlig på grunn av skogskadene i Mellom-Europa og bekymringen for at ozon kan føre til skogskader også i Norge. Ozon ble målt på 14 steder i Norge i 1997 (se figur 1). Målestedene skal særlig vise regional ozonforekomst, men de ulike målestedene er i varierende grad lokalt påvirket av kjemisk nedbrytning av ozon eller avsetning til bakken. I slike tilfeller kan målingene underestimere den regionale ozoneksponeringen (se f.eks. Tørseth et al., 1996).

Stasjonene i nedre Telemark (Langesund, Klyve og Haukenes), drives av Statens forurensningstilsyn. Hovedhensikten er å overvåke luftforurensningene i nedre Telemark. Måleresultater er tatt med i denne rapporten.

Målingene i Karasjok i Finnmark ble startet 4. februar 1997, mens målingene ved Jergul i Finnmark ble avsluttet 31. desember 1996. Tabell 4.1 viser målesteder og datadekning for 1997. Analysemetoden er omtalt i vedlegg C.

Tabell 4.1: Målesteder for ozon i 1997.

St.nr.	Stasjon	Måleperiode	\% datadekn.
1	Prestebakke	$01.01 .97-07.10 .97$	
		$20.11 .97-31.12 .97$	87.8
2	Jeløya	$01.01 .97-31.12 .97$	99.6
3	Hurdal	$01.01 .97-31.12 .97$	99.3
4	Osen	$01.01 .97-31.12 .97$	99.6
5	Langesund	$01.01 .97-31.12 .97$	99.2
6	Klyve	$01.01 .97-31.12 .97$	97.0
7	Haukenes	$04.03 .97-01.10 .97$	55.3
8	Birkenes	$01.01 .97-31.12 .97$	97.5
9	Sandve	$01.01 .97-31.12 .97$	99.8
10	Voss	$01.01 .97-31.12 .97$	99.7
11	Kårvatn	$01.01 .97-31.12 .97$	99.7
12	Tustervatn	$01.01 .97-31.12 .97$	99.7
13	Karasjok	$04.02 .97-18.02 .97$	
		$17.03 .97-05.05 .97$	
		$28.05 .97-20.09 .97$	
14	Zeppelinfjellet	$17.11 .97-31.12 .97$	60.5

4.2. Konsentrasjoner av ozon

Prosentilverdier av bakkenært ozon i 1997 er vist i tabell 4.2. De nordlige stasjonene Tustervatn, Karasjok og Zeppelinfjellet har et høyere bakgrunnsnivå og derved høyre verdier for de lavere prosentiler. Ved stasjoner der temperaturinversjoner (temperaturen avtar med høyden) om natten begrenser tilførselen av ozon fra høyere luftlag (eks. Birkenes, Prestebakke og Kårvatn), samt stasjoner med lokal ozonnedbrytning (eks. Langesund, Klyve og Jeløya) observeres de laveste verdier for 5 og 25 prosentilen.

Månedsmiddelverdiene for ozon er vist i tabell 4.3 og figur 4.1-4.4. Voss og Kårvatn hadde høyeste månedsmiddelverdi med $88 \mu \mathrm{~g} / \mathrm{m}^{3} \mathrm{i}$ april. De høyeste månedsmiddelverdiene forekom i mars eller april på de fleste målestedene.

Ozonkonsentrasjonen varierer systematisk over døgnet. Konsentrasjonen er oftest lav om natta, den stiger utover formiddagen, og er gjerne høyest om ettermiddagen. Dette er illustrert i figur 4.5-4.8, som viser midlere variasjon over døgnet for månedene april-september. Den midlere døgnlige maksimumskonsentrasjonen var høyest ved Langesund, Osen og Birkenes med ca. $85 \mu \mathrm{~g} / \mathrm{m}^{3}$, og lavest ved Karasjok og på Zeppelinfjellet med omlag $53 \mu \mathrm{~g} / \mathrm{m}^{3}$. Midlere døgnvariasjon var oftest tydeligere for målestedene sør i landet enn for målestedene langt nord. Konsentrasjonen varierte svært lite over døgnet på Zeppelinfjellet.

Episoder med høye ozonkonsentrasjoner forekommer i sommerhalvåret og vil oftest vare fra et døgn til en uke. Episodene har sammenheng med høytrykkenes posisjon og vandring over Nord-Europa. Fordi sommerværet i Nord-Europa er svært variabelt, vil antall ozonepisoder også variere atskillig fra år til år. Dette er illustrert i tabell 4.4, der antall episodedøgn og maksimal timemiddelverdi er gitt for 1997 og de foregående 10 åra. Et episodedøgn er definert som et døgn med maksimal timemiddelverdi på minst $200 \mu \mathrm{~g} / \mathrm{m}^{3}$ på ett målested eller minst $120 \mu \mathrm{~g} / \mathrm{m}^{3}$ på flere målesteder. Det var flest episodedøgn i 1988 og 1994. Det var i 1997 (21 episodedøgn) omlag like mange episodedøgn som gjennomsnittet for 10-årsperioden 1987-1996 (20,5 episodedøgn). I tabell 4.4 er det også tatt med antall datoer for hvert år siden 1989 med overskridelse av EU-direktivets grenseverdi på $110 \mu \mathrm{~g} / \mathrm{m}^{3}$ som 8 h -middelverdi, jfr. tabell 4.5 og tabell 4.8. Antall datoer med overskridelse av $110 \mu \mathrm{~g} / \mathrm{m}^{3}$ har variert på liknende måte som antall episodedøgn definert ovenfor. Siden 1989 var det flest datoer med overskridelse i 1992 (58 datoer), og det var i 1997 omtrent like mange (35 datoer) som gjennomsnitt for 8-årsperioden 1989-96 (38,6 datoer).

Tabell 4.2: Prosentilverdier av bakkenæert ozon i 1997.

Stasjon	5%	25%	50%	75%	95%	Maks.
Prestebakke	14	38	58	74	94	144
Jeløya	10	40	62	78	96	142
Hurdal	16	42	60	76	94	152
Osen	18	40	60	78	76	142
Langesund	4	29	57	74	98	156
Klyve	4	28	52	69	86	147
Haukenes	19	42	63	84	102	149
Birkenes	14	38	56	76	94	138
Sandve	28	50	64	78	98	150
Voss	26	50	66	80	100	162
Kårvatn	14	50	69	84	98	142
Tustervatn	38	58	70	78	90	114
Karasjok	36	48	60	76	92	138
Zeppelinfjellet	36	52	66	76	86	108

Tabell 4.3: Månedsmiddelverdier ($\mu \mathrm{g} / \mathrm{m}^{3}$) for ozon, 1997.

Målested	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Des	Års- middel
Prestebakke	37	58	65	74	70	69	59	67	49	44	25	26	54
Jeløya	32	60	69	80	74	77	70	73	60	49	33	26	59
Hurdal	48	63	75	80	69	71	63	70	52	45	35	31	59
Osen	53	68	80	84	73	67	54	58	45	42	40	41	59
Langesund	20	57	61	73	68	74	67	66	53	39	37	26	53
Klyve	25	54	61	68	63	63	61	59	47	38	31	22	49
Haukenes	0	0	64	78	73	68	56	57	41	0	0	0	-
Birkenes	45	66	71	77	71	67	58	57	47	45	38	33	56
Sandve	49	72	75	80	76	74	67	69	62	53	48	42	64
Voss	64	75	82	88	78	77	62	63	48	46	55	43	65
Kárvatn	72	81	84	88	76	68	48	45	43	53	68	54	65
Tustervatn	72	73	81	80	77	64	56	59	58	62	66	65	68
Karasjok		74	86	80	76	63	51	50	49		48	67	64
Zeppelinfjellet	65	74	79	51	62	52	48	51	57	69	72	77	63

Figur 4.1: Månedsmiddelverdier av ozon $1997\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ for Prestebakke, Jeløya, Hurdal og Osen.

Figur 4.2: Månedsmiddelverdier av ozon $1997\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ for Langesund, Klyve og Haukenes.

Figur 4.3: Månedsmiddelverdier av ozon 1997 ($\mu \mathrm{g} / \mathrm{m}^{3}$) for Birkenes, Sandve, Voss og Kärvatn.

Figur 4.4: Månedsmiddelverdier av ozon 1997 ($\mu \mathrm{g} / \mathrm{m}^{3}$) for Tustervatn, Karasjok og Zeppelinfjellet.

Figur 4.5: Midlere døgnvariasjon av ozon ($\mu \mathrm{g} / \mathrm{m}^{3}$) for Prestebakke, Jeløya, Hurdal og Osen, april-september 1997.

Figur 4.6: Midlere døgnvariasjon av ozon ($\mu \mathrm{g} / \mathrm{m}^{3}$) for Langesund, Klyve og Haukenes, april-september 1997.

Figur 4.7: Midlere d $\emptyset \mathrm{gnvariasjon} \mathrm{av} \mathrm{ozon} \mathrm{(} \mu \mathrm{~g} / \mathrm{m}^{3}$) for Birkenes, Sandve, Voss og Kårvatn, april-september 1997.

Figur 4.8: Midlere døgnvariasjon av ozon ($\mu \mathrm{g} / \mathrm{m}^{3}$) Tustervatn, Karasjok og Zeppelinfjellet, april-september 1997.

Tabell 4.4: Antall episodedøgn og høyeste døgnmiddelverdier 1987-1997.

År	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Antall episodedagn	11	32	9	23	18	25	12	34	15	26	21
Høyeste timemiddelverdi ($\mu \mathrm{g} / \mathrm{m}^{3}$)	204	209	172	202	160	204	164	188	160	172	162
Antall datoer med overskridelse av EU-grenseverdien på $110 \mu \mathrm{~g} / \mathrm{m}^{3}$			25	55	34	58	27	42	28	40	35

4.3. Overskridelser av grenseverdier for beskyttelse av helse

Bakkenært ozon kan forårsake helseskader og konsentrasjonsnivået bør ikke overskride gitte grenseverdier. I tabell 4.5 er det vist anbefalte luftkvalitetskriterier for ozon for beskyttelse av helse. Enkelte av grenseverdiene er bare litt høyere enn det generelle bakgrunnsnivået, som vanligvis er $20-80 \mu \mathrm{~g} / \mathrm{m}^{3}$. Den administrative normen for forurensning i arbeidsatmosfære er relativt lav, $200 \mu \mathrm{~g} / \mathrm{m}^{3}$. Avstanden fra det generelle bakgrunnsnivået til konsentrasjoner som også er uønsket i arbeidsmiljøet, er langt mindre for ozon enn for andre forurensningsgasser. Norge har implementert EUs ozondirektiv (EU, 1994) og har en beredskap for melding av ozonepisoder til befolkningen ved overskridelser av dette.

Tabell 4.5: Anbefalte luftkvalitetskriterier for beskyttelse av helse.

Kons. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Midlingstid (timer)	Periode	Referanse	Merknad
100	1		SFT (1992b)	
80	8		SFT (1992b)	
200	1		SFT (1992b)	
110	8	$(0-9,8-17,16-01,12-21)$	EU (1994)	
180	1		EU (1994)	Melding
160	1		$*$	Melding
360	1			
120	8			

* Norge har valgt å melde til befolkningen ved en noe lavere grenseverdi ($160 \mu \mathrm{~g} / \mathrm{m}^{3}$) enn det som EU Krever ($180 \mu \mathrm{~g} / \mathrm{m}^{3}$).

Tabell 4.6 viser antall timer og døgn med timemiddelverdier av ozon større enn $100,160 \mathrm{og} 180 \mu \mathrm{~g} / \mathrm{m}^{3}$ på de ulike målestedene og høyeste timemiddelverdier i 1997. Høyeste timemiddelverdi i 1997 var $162 \mu \mathrm{~g} / \mathrm{m}^{3}$, målt på Voss 6.6 .97 kl . 15. Dette var den eneste overskridelsen av grenseverdien for melding til befolkningen. Timemiddelverdier over $100 \mu \mathrm{~g} / \mathrm{m}^{3}$ ble målt på alle målestedene.

Tabell 4.8 viser antall døgn med overskridelser av 8 h -middelverdien på $110 \mu \mathrm{~g} / \mathrm{m}^{3}$ for beskyttelse av helse. Det var i alt 35 datoer med overskridelser. Flest overskridelser forekom på Langesund med 17 døgn, mens det var ingen overskridelser ved Tustervatn og Zeppelinfjellet.

Tabell 4.6: Antall timer (h) og døgn (d) med timemiddelverdier av ozon større enn 100, 160 og $180 \mu \mathrm{~g} / \mathrm{m}^{3}, 1997$.

	Totalt antall		$100 \mu \mathrm{~g} / \mathrm{m}^{3}$		$160 \mu \mathrm{~g} / \mathrm{m}^{3}$		$180 \mu \mathrm{~g} / \mathrm{m}^{3}$		Høyeste timemiddelverdi	
Målested	Timer	Døgn	h	d	h	d	h	d	$\mu \mathrm{g} / \mathrm{m}^{3}$	Dato
Prestebakke	7694	322	230	32					144	$97-08-10$
Jeløya	8724	365	275	50					142	$97-08-13$
Hurdal	8699	365	254	40					152	$97-08-12$
Osen	8725	365	218	39					142	$97-06-06$
Langesund	8691	364	377	57					156	$97-06-07$
Klyve	8494	360	144	29					147	$97-08-10$
Haukenes	4847	208	277	52					149	$97-06-07$
Birkenes	8543	360	204	34					138	$97-08-20$
Sandve	8739	365	331	45					150	$97-08-11$
Voss	8738	365	356	50	1	1			162	$97-06-06$
Kảrvatn	8736	365	265	32					142	$97-06-06,97-06-07$
Tustervatn	8737	365	55	12					114	$97-08-18,97-08-22$
Karasjok	5302	226	53	7					138	$97-06-09$
Zeppelinfjellet	8518	365	16	4					108	$97-08-31$
Sum datoer		365		114	1	1				

Tabell 4.7: Antall døgn pr. måned med en eller flere 8 h-middelverdier av ozon større enn $80 \mu \mathrm{~g} / \mathrm{m} 3$, 1997

Målested	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Des	Sum
Prestebakke	0	2	4	19	19	18	13	18	0	0	0	0	93
Jeløya	1	5	17	26	22	20	17	19	3	0	0	0	130
Hurdal	2	6	21	28	15	15	13	17	1	0	0	0	118
Osen	4	7	30	29	25	17	12	14	1	0	0	0	139
Langesund	0	3	7	21	25	24	21	3	0	0	0	0	104
Klyve	0	2	7	8	8	11	15	16	2	0	0	0	69
Haukenes			14	26	26	19	9	15	1				110
Birkenes	0	13	19	26	22	17	12	8	1	1	0	0	119
Sandve	0	14	18	26	21	16	17	13	4	0	0	0	129
Voss	3	16	26	27	23	19	12	17	0	0	0	1	144
Kårvatn	14	22	28	30	26	14	7	8	0	0	11	4	164
Tustervatn	3	9	23	20	19	12	6	7	2	2	5	6	114
Karasjok		2	12	22	5	8	0	1	0		0	5	55
Zeppelinfjellet	2	7	20	11	7	1	0	2	0	0	7	11	68
Antall datoer	17	24	31	30	31	25	24	24	7	3	19	19	254

Tabell 4.8: Antall døgn pr. måned med en eller flere 8 h-middelverdier av ozon storre enn $110 \mu \mathrm{~g} / \mathrm{m}^{3}, 1997$.

Målested	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Des	Sum
Prestebakke	0	0	0	0	0	3	2	6	0	0	0	0	11
Jeleya	0	0	0	0	0	3	2	5	0	0	0	0	10
Hurdal	0	0	0	0	0	3	0	4	0	0	0	0	7
Osen	0	0	0	2	0	1	0	2	0	0	0	0	5
Langesund	0	0	0	0	0	5	4	8	0	0	0	0	17
Klyve	0	0	0	0	0	0	0	4	0	0	0	0	4
Haukenes			0	0	3	3	0	6	0				12
Birkenes	0	0	0	0	2	3	1	2	0	0	0	0	8
Sandve	0	0	0	1	0	4	3	6	0	0	0	0	14
Voss	0	0	0	4	1	3	0	5	0	0	0	0	13
Kårvatn	0	0	0	2	0	3	0	1	0	0	0	0	6
Tustervatn	0	0	0	0	0	0	0	0	0	0	0	0	0
Karasjok		0	0	0	0	1	0	0	0		0	0	1
Zeppelinfjellet	0	0	0	0	0	0	0	0	0	0	0	0	0
Antall datoer	0	0	0	4	3	9	6	13	0	0	0	0	35

4.3. Overskridelser av grenseverdier for beskyttelse av vegetasjon

Norske anbefalte luftkvalitetskriterier for beskyttelse av plantevekst er de samme som tålegrensene fastsatt av ECE (1996). Tålegrensene skal reflektere vegetasjonens vekstsesong. Vekstsesongens lengde varierer med planteslag og breddegrad, og 6-månedersperioden april-september er valgt som vekstsesong. EUs ozondirektiv fastsetter også grenseverdier for beskyttelse av plantevekst. I tillegg er det under UN ECE utarbeidet kriterier basert på akkumulert eksponering over terskelverdien $40 \mathrm{ppb}\left(80 \mu \mathrm{~g} / \mathrm{m}^{3}\right.$) (Accumulated exposure over the threshold of 40 ppb, betegnes AOT40). AOT40 beregnes som summen av differansen mellom
timemiddelkonsentrasjonen og 40 ppb for hver time der ozonkonsentrasjonen overskrider 40 ppb . Beregningsmåten viser gode statistiske sammenhenger for en rekke dose-respons-forsøk. Tre tålegrenser er foreslått (ECE, 1996):
a) Eksponering over 3 mnd . for beskyttelse av landbruksvekster

Beregningsgrunnlag: 5\% avlingsreduksjon for hvete:
AOT40 $=3000 \mathrm{ppb}$ h beregnet for dagslystimer (definert som stråling på minst $50 \mathrm{~W} / \mathrm{m}^{2}$.
b) Korttidsverdi for synlige skader på landbruksvekster

AOT40 $=500 \mathrm{ppb}$ h evt. 200 ppb h over 5. påfølgende dager
(avhenger om atmosfærens vanndamptrykk er begrensende for opptak eller ikke), beregnet for dagslystimer.
c) 6-månedersverdi for skog

AOT40 $=10.000 \mathrm{ppb} h$, beregnet for dagslystimer, 1. april -1 . oktober.
Tabell 4.9 viser de anbefalte luftkvalitetskriterier for beskyttelse av vegetasjon.

Tabell 4.9: Anbefalte luftkvalitetskriterier for beskyttelse av vegetasjon.

Kons. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Midlingstid (timer)	Periode	Referanse	Merknad
150	1		SFT (1992b)	
60	8	(0-8,8-16,16-24)	SFT (1992b)	
50	7	(9-16, april-sept.)	SFT (1992b)	
200	1		EU (1994)	
65	24		EU (1994)	
AOT40 (ppb h)				
3000	3 mnd .	15. mai - 15. aug.	ECE (1996)	Vekstsesong tilpasset nordiske forhold
500 (200)	5 dager	15. mai - 15. aug.	ECE (1996)	Avh. av vanndamptrykk
10000	6 mnd .	1. april-1. okt.	ECE (1996)	

Timemiddelverdier over $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ ble målt ved 3 målesteder (Hurdal, Langesund og Voss (tabell 4.10). Det var ingen overskridelser av grenseverdien på $200 \mu \mathrm{~g} / \mathrm{m}^{3}$. Tålegrensen på $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ som middelverdi for 7 timer (7 h -middelverdi) kl. 09-16 i vekstsesongen (april-september) ble overskredet i hele landet. Middelverdien var størst på Jeløya ($81 \mu \mathrm{~g} / \mathrm{m}^{3}$) og avtok nordover til Karasjok ($64 \mu \mathrm{~g} / \mathrm{m}^{3}$) og Zeppelinfjellet ($54 \mu \mathrm{~g} / \mathrm{m} 3$). Figur 4.9 viser 7 h -middelverdien for målestedene Jeløya og Birkenes i perioden 1981-1997. Figuren viser at det er betydelig variasjon fra år til år, og at det ikke er noen markert endringer over perioden.

Middelverdien for 8 timer (8 h -middelverdien) på $60 \mu \mathrm{~g} / \mathrm{m}^{3}$ ble overskredet i alle døgn ($183 \mathrm{~d} ø \mathrm{gn}$) i 6-månedersperioden april-september, og mer enn 170 døgn (93%) ved Jeløya, Langesund og Sandve (tabell 4.11). Zeppelinfjellet hadde
færrest antall døgn, $69 \mathrm{~d} ø \mathrm{gn}(38 \%)$, med 8 h -middelverdier over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$. Det var gjennomgående flest overskridelser i de sørlige delene av landet.

Figur 4.10 viser regional fordeling av antall døgn med 8 h -middelverdier over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$. Regional fordeling av $7 \mathrm{~h}-\mathrm{middelverdiene} \mathrm{i} 1997$ er vist på figur 4.11. Figurene viser gjennomgående \varnothing kende tendens fra nord mot sør.

Tabell 4.12 viser antall døgnmiddelverdier større enn grenseverdien på $65 \mu \mathrm{~g} / \mathrm{m}^{3}$. Det var i alt 338 datoer med overskridelser i 1997 (92%). Flest overskridelser forekom ved Tustervatn og, Kårvatn, med henholdsvis 218 døgn (60\%) og 201 døgn (55\%).

Som vist i tabell 4.13 var det i 1997 overskridelse av tålegrensen for landbruksvekster (3000 ppb h) ved 9 målesteder (Prestebakke, Jeløya, Osen, Langesund, Haukenes, Birkenes, Voss, Sandve og Kårvatn). Det var ingen overskridelser av tålegrensen for skog i 1997 (tabell 4.14).

Tabell 4.10: Antall timer (h) og døgn (d) med timemidler større enn 150 og $200 \mu \mathrm{~g} / \mathrm{m}^{3}$, og middelkonsentrasjon av ozon for 7 timer (kl. 09-16) i vekstsesongen (april - september) 1997.

	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$		$200 \mu \mathrm{~g} / \mathrm{m}^{3}$		Middelkons. kl. 09-16
Målested	h	d	h	d	(april - sept.)
Prestebakke					77
Jeløya					81
Hurdal	1	1			75
Osen					80
Langesund	4	2			80
Klyve					72
Haukenes					77
Birkenes					79
Sandve				79	
Voss	4				77
Kårvatn					75
Tustervatn					71
Karasjok					64
Zeppelinfjellet				54	
Sum datoer		5			

Tabell 4.11: Antall døgn pr. måned med én eller flere 8 h-middelverdier av ozon over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, april-september 1997.

Målested	Apr	Mai	Jun	Jul	Aug	Sep	Sum
Prestebakke	30	31	27	27	29	16	160
Jeløya	30	31	30	29	31	25	176
Hurdal	30	29	27	27	28	19	160
Osen	30	31	30	28	27	17	163
Langesund	30	31	29	31	30	23	174
Klyve	29	25	22	31	24	16	147
Haukenes	28	29	29	25	25	6	142
Birkenes	30	31	30	26	21	16	154
Sandve	30	30	30	28	28	27	173
Voss	30	30	29	27	23	13	152
Kårvatn	30	31	27	25	17	17	147
Tustervatn	30	31	18	21	24	19	143
Karasjok	29	7	20	15	9	5	85
Zeppelinfjellet	15	19	12	5	5	13	69
Antall datoer	30	31	30	31	31	30	183

Figur 4.9: Middelkonsentrasjoner av ozon for 7 timer (kl. 09-16) i vekstsesongen (april-september) ved stasjonene Jeløya og Birkenes i perioden 1981-1997.

Figur 4.10: Antall døgn med 8 hmiddelverdier av ozon over $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, aprilseptember 1997.

Tabell 4.12: Antall døgn pr. måned med en eller flere døgnmiddelverdier av ozon større enn $65 \mu \mathrm{~g} / \mathrm{m}^{3}, 1997$.

Målested	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Des	Sum
Prestebakke	0	8	15	26	21	19	8	16	0	0	0	0	113
Jeløya	2	7	19	26	26	25	22	15	13	8	1	0	164
Hurdal	6	12	29	29	19	17	16	18	0	2	1	0	149
Osen	5	19	31	30	26	13	4	9	2	0	0	1	140
Langesund	0	7	10	22	20	22	18	15	4	1	1	0	120
Klyve	1	5	12	19	14	10	14	12	3	0	1	0	91
Haukenes			12	25	25	16	7	10	0				95
Birkenes	4	18	22	28	22	19	5	7	2	2	0	0	129
Sandve	5	23	24	30	25	16	18	14	10	3	0	0	168
Voss	13	26	30	29	29	24	12	16	0	2	5	2	188
Kårvatn	24	28	31	30	29	16	3	6	2	5	19	8	201
Tustervatn	27	23	31	28	26	15	5	8	7	15	17	16	218
Karasjok		13	14	26	7	11	0	3	0		0	17	91
Zeppelinfjellet	14	27	28	13	15	5	0	3	5	25	25	30	190
Antall datoer	30	28	31	30	31	29	25	25	19	31	29	30	338

Tabell 4.13: Datadekning og beregnede eksponeringsdoser for landbruksvekster for perioden 15. mai-15. august 1997 (enhet ppb h).

Målested	Datadekning $(\%)$	AOT40 (korrigert for datadekning)
Prestebakke	99	3662
Jeløya	99	4422
Hurdal	99	2883
Osen	99	3065
Langesund	100	5465
Klyve	93	2566
Haukenes	95	4358
Birkenes	91	3132
Sandve	99	4367
Voss	99	4219
Kảvatn	99	3060
Tustervatn	99	1210
Karasjok	85	860
Zeppelinfjellet	99	92

Tabell 4.14: Datadekning og beregnede eksponeringsdoser for skog for perioden 1. april - 1. oktober 1997 (enhet ppb h).

Stasjon	Datadekning $(\%)$	AOT40 (korrigert for datadekning)
Prestebakke	99	5366
Jeløya	99	6347
Hurdal	99	4851
Osen	99	5837
Langesund	99	7325
Klyve	94	3272
Haukenes	95	6638
Birkenes	95	5904
Sandve	99	6565
Voss	99	7348
Kárvatn	99	6276
Tustenvatn	99	2575
Karasjok	83	1990
Zeppelinfjellet	99	572

5. Overvåking av sporelementer og organiske forbindelser ved Lista (CAMP) og Ny -Ålesund (AMAP)

Dette kapittelet inneholder en kortfattet beskrivelse av resultatene fra målekampanjene AMAP og CAMP. Måleresultatene fra målinger utført i luft ved Ny-Ålesund under AMAP og organiske forbindelser målt på Lista under CAMP foreligger som vedlegg til rapporten (vedlegg A.4).

5.1. CAMP (Lista)

Comprehensive Atmospheric Monitoring Programme (CAMP) er en av aktivitetene innen Oslo og Paris Kommisjonens (OSPARCOM) studier av transport av landbasert forurensning til Nordsjøen. Det tas for seg 17 forurensningsfaktorer i måleprogrammet under CAMP og målingene utføres ved 28 stasjoner i 10 OSPARCOM land. OSPARCOMs overordnede mål er å redusere utslipp av de studerte forurensningsfaktorene med 50%. CAMP-målingene utføres for å observere endring i tilførsler i samsvar med OSPAR-kommisjonens avtaler.

NILU utfører, etter oppdrag fra SFT, målinger av tungmetaller, heksaklorosykloheksaner (HCH) og heksaklorbenzen (HCB) i prøver fra luft og nedbør, innsamlet ukentlig ved Lista. Følgende tungmetaller er målt: arsen (As), krom (Cr), kobber (Cu), nikkel (Ni), bly (Pb), sink (Zn), kadmium (Cd) og kvikksølv (Hg). I tillegg rapporterer NILU konsentrasjoner av forskjellige nitrogenforbindelser i luft og nedbør ved Birkenes (for Lista), Kårvatn, og Ny-Ålesund til CAMP. Konsentrasjoner av Cd, Pb og Zn i nedbør ved Kårvatn rapporteres også. Disse tilleggsdata er presentert i de foregående kapitler.

5.2. AMAP (Ny-Alesund)

AMAP, Arctic Monitoring and Assessment Programme, startet i 1994. I AMAP deltar: Norge, Sverige, Danmark, Island, Finland, Canada, USA og Russland. Programmet omfatter både kartlegging, overvåking og utredning av miljøgiftbelastningen i nordområdet. Et viktig mål er å overvåke nivåene og trender i utviklingen av antropogene forurensninger i alle deler av det arktiske miljøet (luft, vann og terrestriske forhold) samt vurdering av virkningene av forurensningene. Overvåking av organiske miljøgifter, tungmetaller og radioaktivitet er et prioritert område. NILU har målt organiske miljøgifter på ukesbasis fra og med april 1993.

Målet er å kartlegge nivåene og utviklingen over tid av organiske miljøgifter og tungmetaller i luft på den eksisterende luftmålestasjonen på Zeppelinfjellet ved Ny-Ålesund på Svalbard.

Følgende organiske miljøgifter inngår i måleprogrammet: Heksaklorsykloheksan (HCH , to isomerer), klordaner (7 isomerer), heksaklorbenzen (HCB), DDT (6 isomerer), polyklorerte bifenyler (PCB, 29 kongenerer) og polysykliske aromatiske hydrokarboner (PAH, 37 komponenter). Det inngår i alt 10 tungmetaller (Pb , $\mathrm{Cd}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Cr}, \mathrm{Co}, \mathrm{As}, \mathrm{Mn}$ og V). I tillegg måles også kvikksølv.

Det rapporteres resultater på ukesbasis. Prøvetaking finner sted ukentlig over to døgn. Prøvetaking og analysemetodikk er beskrevet i vedlegg C.

5.3. Resultater fra Lista (CAMP)

5.3.1 Sporelementer i luft

Konsentrasjonene av $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$ og As i finfraksjon og i summen av fin- og grovfraksjon er presentert i tabellene 5.1-5.2. Konsentrasjon av Hg er presentert i tabell 5.3.

Konsentrasjoner av tungmetaller i luft er målt på Lista siden 1991. Tabell 5.4 viser årsmiddelverdier av $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$ og As i luft. Kvikksølv viser tydelig nedgang i konsentrasjonen fra 1992 til 1997. Konsentrasjonene av Cd og Zn indikerer imidlertid en \emptyset kning over perioden. Dette er i motsetning til i nedbør hvor det har vært avtagende nivåer de siste år. En mulig årsak til dette kan være en $\emptyset \mathrm{kt}$ frekvens av lufttilførsel fra kilder i \emptyset st-Europa, mens nivåene i nedbør i større grad vil være påvirket av vestlig lufttilførsel (i større grad nedbørførende luftmasser). Ni og Zn konsentrasjonene er høyere i 1997 sammenlignet med 1996. For elementene As og Cu er det ingen klar tendens.

Tabell 5.1: Månedlige og årlig middelkonsentrasjon av $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$, As og Vi luft på Lista, 1997, målt i finfraksjonen.
Enhet: $n g / m^{3}$.

	Middelkonsentrasjon							
	Pb	Cd	Cu	Zn	Cr	Ni	As	V
Januar	3.06	0.074	0.31	5.04	0.55	0.40	0.29	0.97
Februar	2.10	0.046	1.31	2.71	0.66	0.49	0.24	0.99
Mars	2.82	0.074	0.35	6.85	0.55	0.42	0.58	1.12
April	2.00	0.048	0.49	3.65	0.53	0.41	0.22	0.77
Mai	2.50	0.060	0.62	4.56	0.56	0.70	0.16	0.96
Juni	2.50	0.060	0.62	4.56	0.50	0.81	0.31	0.96
Juli	2.45	0.061	0.52	4.90	0.52	0.62	0.16	0.95
August	2.36	0.058	0.56	4.42	0.75	0.67	0.16	-
September	2.36	0.058	0.56	4.42	0.81	0.30	0.12	0.73
Oktober	2.42	0.059	0.57	4.58	0.21	0.37	0.24	0.66
November	2.40	0.059	0.55	4.58	3.12	2.52	0.18	0.59
Desember	2.40	0.059	0.55	4.58	0.20	0.50	0.16	0.59
1997	2.45	0.06	0.58	4.57	0.75	0.68	0.23	0.85

Tabell 5.2: \quad Månedlige og årlig middelkonsentrasjon av $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$, As og Vi luft på Lista, 1997, målt i både grov- og finfraksjon.
Enhet: $n g / m^{3}$.

	Middelkonsentrasjon							
	Pb	Cd	Cu	Zn	Cr	Ni	As	V
Januar	5.39	0.130	1.09	10.29	1.70	1.20	0.50	1.68
Februar	2.60	0.055	1.58	3.81	2.02	1.15	0.33	1.24
Mars	3.46	0.089	0.76	8.81	1.70	1.04	0.71	1.47
April	2.81	0.062	1.64	6.42	1.65	1.00	0.27	1.42
Mai	2.02	0.035	1.39	4.35	1.62	1.54	0.18	2.29
Juni	3.17	0.072	1.61	7.28	1.55	1.82	0.36	2.72
Juli	1.92	0.055	0.83	5.72	1.63	1.40	0.18	1.96
August	3.65	0.090	1.30	6.66	1.25	1.61	0.25	1.99
September	2.25	0.047	1.23	5.99	1.32	0.75	0.21	0.90
Oktober	2.93	0.054	0.72	5.49	0.88	0.91	0.38	1.05
November	4.10	0.111	0.91	8.37	3.70	5.24	0.29	1.24
Desember	4.59	0.132	1.54	10.83	0.93	1.30	0.25	1.23
1997	3.24	0.08	1.22	7.00	0.92	1.58	0.32	1.60

Tabell 5.3: Månedlige middelkonsentrasjoner av Hg i luft på Lista, 1997.
Enhet: ng/m3.

Måned	Middelkonsentrasjon $\mathrm{ng} / \mathrm{m}^{3}$
Januar	1.7
Februar	0.9
Mars	1.2
April	1.4
Mai	1.3
Juni	1.6
Juli	1.3
August	1.7
September	1.4
Oktober	1.4
November	1.5
Desember	1.5
1997	1.4

Tabell 5.4: Årsmiddelverdier av $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$, As og Hg i luft på Lista fra 1992 til 1997 (grov- og finfraksjon).
Enhet: $n g / m^{3}$.

Element	1992	1993	1994	1995	1996	1997
Pb	2.35	3.67	3.68	3.80	3.78	3.24
Cd	0.05	0.07	0.07	0.08	0.08	0.08
Cu	0.47	0.85	0.90	1.00	0.88	1.22
Zn	3.93	6.98	4.53	6.10	5.92	7.00
Cr	1.79	3.70	2.80	1.80	1.03	0.92
Ni	1.33	0.81	0.88	0.80	0.85	1.58
As	0.19	0.41	0.36	0.50	0.44	0.32
Hg	2.06	1.84	1.84	1.63	1.62	1.40

5.3.2. Sporelementer i nedbør

Konsentrasjoner av andre tungmetaller enn Hg i nedbørprøver fra Lista er presentert tidligere i kapittel 2. Månedsmiddelkonsentrasjonene av Hg er vist i tabell 5.5.

Tabell 5.5: Månedlige middelkonsentrasjoner av Hg i nedbør på Lista. 1997. Enhet: ng/l.

Måned	Middelkonsentrasjon ng//
Januar	20.2
Februar	10.5
Mars	19.5
April	26.8
Mai	8.6
Juni	25.4
Juli	11.5
August	9.5
September	8.3
Oktober	5.9
November	6.7
Desember	5.6
1997	13.2

5.3.3. Organiske forbindelser i luft

Månedlige middelkonsentrasjoner av α - og γ-heksaklorsykloheksan (HCH) og heksaklorbenzen (HCB) i luft fra Lista er gjengitt i tabell 5.A. Den gjennomsnittlige luftkonsentrasjonen for summen av $\alpha-$ og $\gamma-\mathrm{HCH}$ i 1997 var $110 \mathrm{pg} / \mathrm{m}^{3}$. Til sammenligning var den i årene 1992, 1993, 1994, 1995 og 1996 henholdsvis $179,132,188,117$ og $120 \mathrm{pg} / \mathrm{m}^{3}$. Den laveste konsentrasjon som ble målt var $38,0 \mathrm{pg} / \mathrm{m}^{3}$ (uke 2) og den høyeste konsentrasjonen var $392 \mathrm{pg} / \mathrm{m}^{3}$ (uke 24). Økningen kan i hovedsak tilskrives en \emptyset kning av konsentrasjonen av lindan $(\gamma-\mathrm{HCH})$ som fortsatt er i bruk i en del europeiske land, bl.a. Frankrike (Voldner and Li , 1995). Det kan se ut som det i sommerhalvåret er noe høyere konsentrasjon av HCH enn om vinteren. Høye konsentrasjoner i tilknytning til sprøyting av HCH på kontinentet registreres normalt ved økede luft- og nedbørkonsentrasjoner på Lista i perioden april til juni (figur 5.1). Den tilsvarende sesongpregede fordeling av HCH i luft er også dokumentert fra Sverige (Brorström-Lundén, 1995). Generelt er konsentrasjonen av HCH på Lista ca. 2 ganger høyere enn konsentrasjonen som måles i Ny -Ålesund.

Årsmiddelet for HCB i luft var $92,5 \mathrm{pg} / \mathrm{m}^{3}$. I årene fra 1992 til 1996 var middelkonsentrasjonen henholdsvis $121,161,95,95 \mathrm{og} 86,1 \mathrm{pg} / \mathrm{m}^{3}$. Månedlig middelkonsentrasjon er gjengitt i tabell 5.1. De høyeste konsentrasjonene av HCB ble, som i 1995, målt i på slutten av året. De høyeste verdiene ble funnet i prøver som ble tatt i ukene $44\left(176 \mathrm{pg} / \mathrm{m}^{3}\right)$, $46\left(153 \mathrm{pg} / \mathrm{m}^{3}\right)$ og $47\left(147 \mathrm{pg} / \mathrm{m}^{3}\right)$. Den laveste konsentrasjonen ble målt i uke $2\left(64,2 \mathrm{pg} / \mathrm{m}^{3}\right)$.

Tabell 5.6: Månedlige middelkonsentrasjoner av HCH og HCB i luft på Lista, 1997. Enhet: $\mathrm{pg} / \mathrm{m}^{3}$.

	Middelkonsentrasjoner 1997			
Måned	a-HCH	g-HCH	Sum HCH	HCB
Januar	35,5	20,1	55,6	82,8
Februar	40,8	36,7	77,4	87,0
Mars	33,6	26,5	60,1	77,5
April	40,2	23,4	63,6	78,9
Mai	44,5	84,2	128,7	85,3
Juni	59,3	126,3	185,6	94,6
Juli	68,2	105,3	173,6	80,3
August	84,1	86,0	170,1	80,2
September	50,1	92,7	142,8	87,1
Oktober	43,9	41,8	85,7	120,0
November	59,3	61,9	121,2	133,7
Desember	44,3	39,0	83,3	107,6

a+g HCH i luft, Lista 1997

Figur 5.1: Ukentlig luftkonsentrasjon av HCH (sum α - og $\gamma-H C H)$ på Lista i 1997.

5.3.4. Organiske forbindelser i nedbør

Månedlige middelkonsentrasjoner for HCH og HCB i nedbør på Lista er gjengitt i tabell 5.7, og ukekonsentrasjoner for sum HCH er gjengitt i figur 5.2. Den gjennomsnittlige nedbørkonsentrasjonen for HCH i 1997 (sum α - og γ-HCH) var $6,15 \mathrm{ng} / \mathrm{l}$. Til sammenligning var gjennomsnittkonsentrasjonen i årene fra 1992 til 1996 henholdsvis $11,7,15,6,12,7,8,43$ og $11,9 \mathrm{ng} / \mathrm{l}$. Den laveste konsentrasjon som ble målt i 1997 var $1,42 \mathrm{ng} / \mathrm{l}$ (uke 15) og den høyeste konsentrasjonen var $16,5 \mathrm{ng} / \mathrm{l}$ (uke 45). Det forekommer ingen utpreget sesongvariasjon, men de høyeste konsentrasjonene av HCH forekommer vanligvis i perioden fra april til
juni, som faller sammen med bruksperioden i Europa (Haugen et al., 1998). Økningen kan utelukkende tilskrives en \varnothing kning av konsentrasjonen av lindan ($\gamma-\mathrm{HCH}$). En konsentrasjonsøkning av HCH ble observert sent på våren 1997, men årets to høyeste verdier ble målt i prøver tatt om høsten (figur 5.2). Liknende resultater ble observert for HCH i luft i 1995. HCH-konsentrasjonen hadde i 1995 et "vårmaksimum" i uke 18 og et enda høyere maksimum i uke 43 om høsten. En \emptyset kning av konsentrasjonen i luft og nedbør, som normalt observeres på Lista om våren, ses i sammenheng med sprøyting med HCH på kontinentet. Denne sesongpregede fordeling av HCH i nedbør er også dokumentert fra Sverige og Danmark (Brorström-Lundén, 1995; Cleeman et al., 1995).

Tabell 5.7: Månedlige middelkonsentrasjoner av HCH og HCB inedbør på
Lista, 1997.
Enhet: ng/l.

Måned	$\alpha-H C H$	Middelkonsentrasjoner 1997 -HCH				Sum HCH	HCB
Januar	1,1	3,2	4,3	1,0			
Februar	1,3	3,3	4,6	1,2			
Mars	1,6	3,0	4,7	0,9			
April	0,9	1,3	2,2	0,8			
Mai	0,7	6,5	7,2	0,7			
Juni	1,1	10,9	12,1	1,1			
Juli	1,2	3,1	4,3	0,3			
August	1,0	7,2	8,1	1,3			
September	1,0	4,1	5,1	0,8			
Oktober	1,2	3,9	5,1	0,9			
November	1,6	10,8	12,4	0,6			
Desember	1,3	3,7	5,0	0,7			

En ekstrem høy verdi for $\alpha-\mathrm{HCH}$ fra en prøve som ble tatt i uke 8 er unntatt fra beregningen av middelkonsentrasjonen for februar. Prøven tilfredsstilte ikke NILUs krav til gjenvinning av internstandard.

Konsentrasjonen av HCB i de individuelle nedbørprøver varierte fra 0,24 til $2,33 \mathrm{ng} / \mathrm{l}$. Middelkonsentrasjonen for hele året 1997 var $0,92 \mathrm{ng} / \mathrm{l}$. HCB konsentrasjonen øket gradvis i perioden 1992 ($0,12 \mathrm{ng} / \mathrm{l}$) til $1996(1,54 \mathrm{ng} / \mathrm{l})$.
a+g HCH i nedbør, Lista 1997

Uke nr.

Figur 5.2: Ukentlig nedbørkonsentrasjon av HCH (sum α - og γ-HCH) på Lista i 1997. Manglende data representerer uker uten tilstrekkelig nedbør. I en del tilfeller ble flere målinger gjort i lфpet av en uke. I slike tilfeller ble prøvene nummerert med ukenummer og en bokstav, f.eks. $2 a$ og $2 b$.

5.4. Resultater fra Ny -Ålesund (AMAP)

5.4.1. Organiske forbindelser luft

HCH
Den gjennomsnittlige konsentrasjonen av HCH (sum $\alpha-$ og γ-HCH) i luft var $67,8 \mathrm{pg} / \mathrm{m}^{3}$. I løpet av året varierte konsentrasjonen fra $36,4 \mathrm{til} 156 \mathrm{pg} / \mathrm{m}^{3}$ (figur 5.3). Ved beregningen av årmiddelkonsentrasjonen var resultatet fra uke 35 utelatt da det var urealistisk lavt og det ble rapportert problemer ved prøvetakingen. Sum HCH viste ingen utpreget sesongvariasjon, men i uke 25 ble det observert en høy verdi ($95,9 \mathrm{pg} / \mathrm{m}^{3}$) for $\gamma-\mathrm{HCH}$ en uke etter at et tilsvarende maksimum ble observert på Lista. γ-HCH hadde et tilsvarende maksimum også i uke $38\left(105 \mathrm{pg} / \mathrm{m}^{3}\right)$ uten at noe tilsvarende maksimum ble observert på Lista. NILU har foretatt målinger av HCH i Ny -Ålesund fra begynnelsen av 80 -årene (Oehme et al., 1995). Disse målingene viser at α - HCH -konsentrasjonen har avtatt siden begynnelsen av 80 -årene (figur 5.4). Dette skyldes høyst sannsynlig redusert bruk av teknisk $\mathrm{HCH}(65-70 \% \alpha-\mathrm{HCH}$, ca. $15 \% \gamma-\mathrm{HCH}$ samt andre stoffer), som er erstattet med lindan ($>99 \% \gamma$-HCH). For γ-HCH har det ikke vært signifikant endring over dette tidsrommet.
a+g HCH i luft, Ny-Ålesund 1997

Figur 5.3: Ukentlig luftkonsentrasjon av HCH (sum $\alpha-$ og $\gamma-H C H)$ i NyÅlesund 11997.

Figur 5.4: $\quad \alpha-H C H$ i luft i perioden mars-april i $N y$-Alesund.

Klordaner

Konsentrasjonen av klordaner (sum trans- og cis-klordan samt trans- og cisnonaklor) varierte fra 0,86 til $5,3 \mathrm{pg} / \mathrm{m}^{3}$. Den høyeste konsentrasjonen ble målt i uke 19. Det forekom ingen utpreget sesongvariasjon. Middelkonsentrasjonen var $1,79 \mathrm{pg} / \mathrm{m}^{3}$. Tidligere målte middelkonsentrasjoner av klordaner er $2,64 \mathrm{pg} / \mathrm{m}^{3}$ (1993), $2,96 \mathrm{pg} / \mathrm{m}^{3}$ (1994), $2,20 \mathrm{pg} / \mathrm{m}^{3}$ (1995) og $2,90 \mathrm{pg} / \mathrm{m}^{3}$ (1996). Nivået er sammenliknbart med det som er funnet i Canadisk Arktis (Bidleman et al., 1995).

I tillegg ble tre andre komponenter (U-82, MC-5 og MC-7), som også tilhører gruppen klordaner, analysert. For disse stoffene er for tiden ingen kvantitativ standardforbindelse tilgjengelig. Arbeid er i gang med å fremstille en kvantitativ standard for disse stoffene og når denne foreligger vil det være enkelt å korrigere de foreløpige måleverdiene for denne gruppen. Inntil dette er gjort, kan de foreliggende data kun ansees å være semikvantitative. Den høyeste verdi for summen av gruppen U-82, MC-5 og MC-7, $0,30 \mathrm{pg} / \mathrm{m}^{3}$, ble funnet i uke 19 , mens middelverdien for året 1996 var $0,11 \mathrm{pg} / \mathrm{m}^{3}$.

DDT-gruppen

Middelkonsentrasjonen av sum DDT var $1,83 \mathrm{pg} / \mathrm{m}^{3}$. Konsentrasjonen av sum DDT varierte mellom 0,32 og $10,8 \mathrm{pg} / \mathrm{m}^{3}$ (verdien fra uke 35 er sett bort fra da det oppstod tekniske vanskeligheter ved prøvetakingen, noe som førte til en urealistisk lav verdi). Konsentrasjonen gjennom året viste ikke noe utpreget sesongvist mønster (figur 5.5). De høyeste verdiene ble påvist i prøver som ble tatt i ukene 25 og 38 , som også observert for γ-HCH. I disse prøvene utgjorde komponenten pp'DDE hovedandelen av sum DDT. Vi har ikke tilstrekkelig informasjon til å kunne forklare de høye konsentrasjonene i disse prøvene ved mulig langtransport fra kontinentet.

Sum DDT i luft, Ny-Ålesund 1997

Figur 5.5: Ukentlig luftkonsentrasjon av DDT (sum o, p'-DDE, p,p'-DDE, $o, p^{\prime}-D D D, p, p^{\prime}-D D D, o, p^{\prime}-D D T$ og $\left.p, p^{\prime}-D D T\right)$ i $N y-\AA ̊ l e s u n d i$ 1997.

HCB
Middelkonsentrasjonen av HCB i 1997 var av samme størrelsesorden som tidligere observert (Tabell 5.8). Den laveste konsentrasjonen, $35,0 \mathrm{pg} / \mathrm{m}^{3}$, ble målt i uke 32. Den høyeste konsentrasjonen ble påvist i prøven fra uke 7 ($193 \mathrm{pg} / \mathrm{m}^{3}$). Den midlere årlige konsentrasjonen var $81,9 \mathrm{pg} / \mathrm{m}^{3}$. I det foregående var resultatet fra ukene 39,40 og 44 utelatt da gjenvinningen av den interne standarden etter
opparbeidelsen var svært lav, noe som særlig i de første to tilfellene førte til usannsynlig høye analyseresultater.

Tabell 5.8: Årlige middelkonsentrasjoner av HCB i luft i Ny-Alesund.

Ar	Middelkonsentrasjon ($\mathrm{pg} / \mathrm{m}^{3}$)
1993	92
1994	115
1995	99
1996	100
1997	82

PCB

I 1997 ble det opprinnelige måleprogrammet, som omfattet 10 PCB-kongenerer, utvidet til å omfatte 29 kongenerer. Figur 5.6 viser summen av PCB (29 kongenerer) gjennom året. Armiddelverdien var $381 \mathrm{pg} / \mathrm{m}^{3}$. Konsentrasjonene var, som i 1994 og 1996, høye og hadde et maksimum om våren og et om høsten. I de to foregående års rapporter fra PCB-målinger på Zeppelinfjellet ved NyÅlesund ble det opplyst at "Årsaken til de observerte konsentrasjons \varnothing kninger er ikke kjent, men den kan skyldes en mulig kontaminering fra en lokal PCB-kilde". I løpet av 1997 foretok NILU omfattende undersøkelser av PCB-nivåene i og omkring prøvetakingsstasjonen på Zeppelinfjellet for å avklare om det fantes en lokal kilde som kunne være årsaken til de overraskende måleresultatene. Det ble funnet flere indisier som tydet på at det finnes en eller flere PCB-kilder inne i laboratoriet i målestasjonen, som kan ha kontaminert adsorbentene som ble brukt til prøvetakingen. I slutten av 1997 ble prøvetakingsutstyret for PCB flyttet ut i det såkalte "Heishuset", som er et vindfang som beskytter gondolen til taubanen når den står oppe ved stasjonen. "Heishuset" er åpent på den siden som vender ut mot Ny -Ålesund og rommet er således meget godt ventilert. En blindprøve som ble tatt der i mars 1998 inneholdt meget lave PCB-nivåer og flyttingen av prøvetakeren ansees dermed å ha løst kontamineringsproblemet i stasjonen.

Figur 5.6: Ukentlig luftkonsentrasjon av PCB (sum PCB-18, -28, -31, -33, -37, -47, -52, -66, -74, -99, -101, -105, -114, -118, -123, -128, -138, -141, -149, -153, -156-157, -167, -170, -180, -183, -187, -189, -206 og -209) i Ny-Ålesund i 1997.

PAH

Ukentlige konsentrasjoner av polysykliske aromatiske hydrokarboner (PAH) i luft er gjengitt i figur 5.7. Den sesongvise fordeling av PAH som vanligvis observeres i Ny-Ålesund gjenspeiler den årlige transport av luftmasser fra lavere breddegrader som finner sted i vinterhalvåret og tidlig om våren. Dette er i samsvar med hva som er observert i kanadisk del av Arktis (Fellin et al., 1996).

De mest flyktige PAH-forbindelsene, naftalenene og bifenyl, utgjør ca 70% av totalkonsentrasjonen av PAH. Sum av de mindre flyktige 3- til 7-ring PAH er gjengitt i figur 5.8.

Middelkonsentrasjonen av PAH i 1997 var $6,4 \mathrm{ng} / \mathrm{m}^{3}$, som er høyere enn i 1996 $\left(3,5 \mathrm{ng} / \mathrm{m}^{3}\right)$. Dette skyldes trolig at det i 1996 , grunnet tekniske problemer, ble gjort færre målinger i løpet av denne perioden når langtransport er mest sannsynlig. Den høyeste verdien, $42,7 \mathrm{ng} / \mathrm{m}^{3}$, ble målt i uke 3 .

Figur 5.7: Ukentlig luftkonsentrasjon av PAH (37 PAH komponenter) i Ny-Alesund i 1997.

Sum 3-7 ring PAH i luft, Ny-Ålesund 1997

Figur 5.8: Ukentlig luftkonsentrasjon av sum 3- til 7-ring PAH i Ny-Ålesund i 1997.

Referanser

Berge, E. (ed.) (1997) Transboundary air pollution in Europe, Part 1: Emission, dispersion and trends of acidifying and eutrophying agents. EMEP/MSC-W Status Report 1997.

Bidleman, T.F., Falconer, R.L. and Walla, M.D. (1995) Toxaphene and other organochlorine compounds in air and water at Resolute Bay, N.W.T., Canada. Sci. Total Environ., 160/161, 55-63.

Brorström-Lundén, E. (1995) Measurements of semivolatile organic compounds in air and deposition. Dr. Thesis, Dept. Anal. Mar. Chemistry, Göteborg.

Cleemann, M., Poulsen, M.E. og Hilbert, G. (1995) Long distance transport deposition of lindane in Denmark. NMR seminar, Nov. 14-16, 1994 (Tema Nord 1995:558).

DNMI (1997-98) Klimatologisk månedoversikt for januar 1997-desember 1997. Oslo, Det norske meteorologiske institutt.

Dollard, G.J. og Vitols, V. (1980) Wind tunnel studies of dry deposition of SO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ aerosols. In: Internat. conf. on impact of acid precipitation. Sandefjord 1980. Ed. by D. Drabløs and A. Tollan. Oslo-Ås (SNSFprosjektet), s. 108-109.

Dovland, H. og Eliassen, A. (1976) Dry deposition on snow surface. Atmos. Environ., 10, 783-785.

ECE (1996) Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. Geneva, Convention on long-range transboundary air pollution.

ECE (1994) Critical Levels for Ozone; a UN-ECE workshop report, Bern 1993. Ed. by J. Fuhrer and B. Achermann. Liebfeld-Bern, Swiss Federal Station for Agricultural Chemistry. (Schriftenreihe der FAC Liebfeld, 16).

EU (1994) Bekendtgørelse om overvågning af luftens indhold af ozon.
København, Miljøministeriet (Miljøministeriets bekendgørelse nr. 184, 1994).
Fellin, P., Barrie, L.A., Dougherty, D., Toom, D., Muir, D., Grift, N., Lockhart, L. og Billeck, B. (1996) Air monitoring in the Arctic: results for selected persistent organic pollutants for 1992. Environ. Toxic. Chem., 15, 253-261.

Ferm, M. (1988) Measurements of gaseous and particulate NH_{3} and HNO_{3} at a background station: Interpretation of the particle composition from the gas phase concentrations. Proceeding from Cost 611 Workshop Villefrance sur Mer, 3-4 May 1988.

Fowler, D. (1980) Removal of sulphur and nitrogen compounds from the atmosphere in rain and by dry deposition. In: Internat. conf. on impact of acid precipitation. Sandefjord 1980. Ed. by D. Drabløs and A. Tollan. Oslo-Ås (SNSF- prosjektet), s. 22-32.

Garland, J.A. (1978) Dry and wet removal of sulfur from the atmosphere. Atmos. Environ., 12, 349-362.

Gilbert, R.O. (1987) Statistical methods for environmental pollution monitoring. New York, Van Nostrand Reinhold Co.

Hanssen, J.E., Rambæk, J.P., Semb, A. og Steinnes, E. (1980) Atmospheric deposition of trace elements in Norway. In: Internat. conf. on impact of acid precipitation. Sandefjord 1980. Ed. by D. Drabløs and A. Tollan. Oslo-Ås (SNSF- prosjektet), s. 116-117.

Haugen, J.E. (1996) Determination of polychlorinated compounds in ambient air: Methodology and quality assurance. In: EMEP workshop on Heavy Metals and Persistent Organic Pollutants, Beekbergen, Nederland, 3-5 mai 1994.

Haugen, J.-E., Wania, F., Ritter, N. og Schlabach, M. (1998) Hexachlorocyclohexanes in air in Southern Norway. Temporal variation; sourcerallocation, and temperature dependence. Environ. Sci. Technol., 31, 217-224.

Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker Jr., R.P. and Matt, D.R. (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, Soil Poll., 36, 311-329.

Hjellbrekke, A.G. (1995) Ozone Measurements 1990-1992. Kjeller, Norsk institutt for luftforskning (EMEP/CCC-Report 4/95).

OECD (1982) Issues and Challenges for OECD Agriculture in the 1980s. Paris, Organisation for Economic Co-operation and Development. (AGRI/WPI, 82, 5, Statistical Annex).

Oehme, M. og Stray, H.(1982) Quantitative determination of ultra-traces of chlorinated compounds in high-volume air samples from the Arctic using polyurethane foam as collection medium. Fresenius Z. Anal. Chem., 311, 665-673.

Oehme, M., Haugen, J.-E. og Schlabach, M. (1995) Ambient air levels of persistent organochlorines in spring 1992 at Spitsbergen and the Norwegian mainland: Comparison with 1984 results and quality control measures. Sci. Total Environ., 160/161, 139-152.

Oehme, M., Haugen, J.-E. og Schlabach, M. (1995) Seasonal changes and relations between levels of organochlorines in arctic ambient air. First results of an all year round monitoring program at Ny-Ålesund, Svalbard, Norway. Environ Sci. Technol., 30, 2294-2304.

Semb, A. (1978) Deposition of trace elements from the atmosphere in Norway. Oslo-Ås (SNSF FR 13/78).

Statens forurensningstilsyn (1981) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1980. Oslo (Statlig program for forurensningsovervåking. Rapport 26/81).

Statens forurensningstilsyn (1982) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1981. Oslo (Statlig program for forurensningsovervåking. Rapport 64/82).

Statens forurensningstilsyn (1983) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1982. Oslo (Statlig program for forurensningsovervåking. Rapport 108/83).

Statens forurensningstilsyn (1984) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1983. Oslo (Statlig program for forurensningsovervåking. Rapport 162/84).

Statens forurensningstilsyn (1985) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1984. Oslo (Statlig program for forurensningsovervåking. Rapport 201/85).

Statens forurensningstilsyn (1986a) The Norwegian monitoring programme for long-range transported air pollutants. Results 1980-84. Oslo (Statlig program for forurensningsovervåking. Rapport 230/86).

Statens forurensningstilsyn (1986b) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1985. Oslo (Statlig program for forurensningsovervåking. Rapport 256/86).

Statens forurensningstilsyn (1987) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1986. Oslo (Statlig program for forurensningsovervåking. Rapport 296/87).

Statens forurensningstilsyn (1988) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1987. Oslo (Statlig program for forurensningsovervåking. Rapport 333/88).

Statens forurensningstilsyn (1989) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1988. Oslo (Statlig program for forurensningsovervåking. Rapport 375/89).

Statens forurensningstilsyn (1991a) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1989. Oslo (Statlig program for forurensningsovervåking. Rapport 437/91).

Statens forurensningstilsyn (1991c) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1990. Oslo (Statlig program for forurensningsovervåkning. Rapport 466/91).

Statens forurensningstilsyn (1992a) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1991. Oslo (Statlig program for forurensningsovervåkning. Rapport 506/92).

Statens forurensningstilsyn (1992b) Virkninger av luftforurensning på helse og miljø: Anbefalte luftkvalitetskriterier. Oslo (SFT-rapport 92:16).

Statens forurensningstilsyn (1993) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1992. Oslo (Statlig program for forurensningsovervåkning. Rapport 533/93).

Statens forurensningstilsyn (1994) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1993. Oslo (Statlig program for forurensningsovervåkning. Rapport 583/94).

Statens forurensningstilsyn (1995) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1994. Oslo (Statlig program for forurensningsovervåkning. Rapport 628/95).

Statens forurensningstilsyn (1996) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1995. Oslo (Statlig program for forurensningsovervåkning. Rapport 671/96).

Statens forurensningstilsyn (1997) Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1996. Oslo (Statlig program for forurensningsovervåkning. Rapport 703/97).

Tørseth, K. og Hermansen, O. (1995) Program for terrestrisk naturovervåking. Overvåking av nedbørkjemi i tilknytning til feltforskningsområdene, 1994. Kjeller (NILU OR 33/95).

Tørseth, K., Mortensen, L. og Hjellbrekke, A.G. (1996) Kartlegging av bakkenær ozon etter tålegrenser basert på akkumulert dose over 40 ppb. Kjeller (NILU OR 12/96).

Voldner, E.C. and Sirois, A. (1986) Monthly mean spatial variations of dry deposition velocities of oxides of sulphur and nitrogen. Water, Air, Soil Poll., 30, 179-186.

Voldner, E.C. and Li, Y.F. (1995) Global usage of selected persistent organochlorines. Sci. Total Environ., 160/161, 201-210.

WHO (1995) Update and revision of the air quality guidelines for Europe. Meeting of the working group "classical" air pollutants, Bilthoven, The Netherlands 11-14 October. København.

Tables, figures and appendices

Table 1.1 Weighted annual mean concentrations and wet deposition of chemical components in precipitation at Norwegian background stations in 1997.

Table 1.2 Average mean changes in the annual mean concentrations of seasalt corrected sulphate, nitrate, ammonium and magnesium in precipitation at Norwegian background measuring stations.

Table 2.1 Annual weighted mean concentrations of *heavy metals in precipitation ($\mu \mathrm{g} / \mathrm{l}$) at Norwegian background stations in 1997.

Table 2.2 Annual wet deposition ($\mu \mathrm{g} / \mathrm{m}^{2}$) of heavy metals at Norwegian background stations in 1997.

Table 3.1 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily and 2 and 3 days mean concentrations of sulphur dioxide in the air at Norwegian background stations in 1997.

Table 3.2 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily and 2 and 3 days mean concentrations of particulate sulphate in the air at Norwegian background stations in 1997.

Table 3.3 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily mean concentrations of nitrogen dioxide in the air at Norwegian background stations in 1997.

Table 3.4 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily, 2 and 3 days mean concentrations of $\mathrm{NO}_{3}{ }^{-}$ $+\mathrm{HNO}_{3}$ in the air at the Norwegian background stations in 1997.

Table 3.5 The 50-, 75- and 90-percentile concentrations, maximum, mean values and dates with maxima of daily, 2 and 3 days mean concentrations of $\mathrm{NH}_{4}{ }^{+}$ $+\mathrm{NH}_{3}$ in the air at the Norwegian background stations in 1997.

Table 3.6 Dry deposition calculated from seasonal mean concentrations of sulphur and nitrogen components in air and empirically derived dry deposition velocities, and measured seasonal wet deposition at Norwegian background stations.

Table 3.7 Average mean changes in the annual mean concentrations of sulphur dioxide and particulate sulphate in the air at Norwegian background stations during the period 1980-97.

Table 4.1 Sampling period and data coverage of ozone in 1997.
Table $4.2 \quad$ Percentile values of ozone $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right), 1997$
Table 4.3 Monthly and yearly mean concentrations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) in 1997.
Table 4.4 Number of episode-days, the highest hourly mean concentrations and number of days with exceedance of the EU critical level of $110 \mu \mathrm{~g} / \mathrm{m}^{3}$, during the period 1987-1997.

Table 4.5 Air quality guidelines of ozone for the protection of human health.
Table 4.6 Number of hours (h) and days (d) with hourly mean concentrations of ozone larger than 100,160 and $180 \mu \mathrm{~g} / \mathrm{m}^{3}$, and the largest hourly mean concentrations in 1997.

Table 4.7 Number of days per month with one or more 8 h -mean concentrations of ozone larger than $80 \mu \mathrm{~g} / \mathrm{m}^{3}, 1997$.

Table 4.8 Number of days per month with one or more 8 h -mean concentrations of ozone larger than $110 \mu \mathrm{~g} / \mathrm{m}^{3}, 1997$.

Table 4.9 Air quality guidelines of ozone for the protection of vegetation.
Table 4.10 Number of hours (h) and days (d) with hourly mean concentrations of ozone larger than 150 and $200 \mu \mathrm{~g} / \mathrm{m}^{3}$, and mean concentrations of ozone for 7 hours (09-16 hours) in the growing season (April - September, 1997).

Table 4.11 Number of days per month with one or more 8h-mean concentrations of ozone larger than $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, April - September 1997.

Table 4.12 Number of days per month with diurnal mean concentrations of ozone larger than $65 \mu \mathrm{~g} / \mathrm{m}^{3}, 1997$.

Table 4.13 Data coverage and calculated ozone exposure according to the AOT40 concept for crops, 15 May - 15 August, 1997 (unit ppb h).

Table 4.14 Data coverage and calculated ozone exposure according to the AOT40 concept for forests, 1 April - 1 October, 1997 (unit ppb h).

Table 5.1 Monthly an annual average concentrations of $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}$, Ni, AS and V at Lista measured in fine fraction of particles in $1997\left(\mathrm{ng} \mathrm{m}^{3}\right)$.

Table 5.2 Monthly an annual average concentrations of $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cr}$, Ni, AS and V at Lista measured in both coarse and fine fraction of particles in 1997 ($\mathrm{ng} \mathrm{m}^{3}$).

Table 5.3 Monthly average air concentrations of Hg at Lista in $1997\left(\mathrm{ng} / \mathrm{m}^{3}\right)$.

Table 5.4 Comparison of mean annual concentrations of $\mathrm{Cd}, \mathrm{Hg}, \mathrm{As}, \mathrm{Cr}, \mathrm{Cu}$, Ni, Pb and Zn at Lista during the period from 1992 through $1997\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$.

Table 5.5 Monthly average concentrations of Hg in precipitation at Lista in 1997 (ng/l).

Table 5.6 Monthly average air concentrations of HCHs and HCB at Lista in 1997 ($\mathrm{pg} / \mathrm{m}^{3}$).

Table 5.7 Monthly average concentrations of HCHs and HCB in precipitation at Lista in 1997 (ng/l).

Table 5.8 Yearly mean concentrations of HCB in the air at Ny -Alesund.

Figure 1 Norwegian background stations, 1997.
Figure 1.1 Annual mean concentrations and wet deposition of non seasalt sulphate and strong acid $\left(\mathrm{H}^{+}\right)$in Norway in 1997.

Figure 1.2 Annual mean concentrations of nitrate, ammonium, sodium and deposition of nitrogen compounds in precipitation in Norway in 1997.

Figure 1.3 Monthly weighted mean concentrations and mean wet deposition of sulphate in 1997 and in the proceeding years.

Figure 1.4 : Annual mean concentrations of non seasalt sulphate; nitrate, ammonium and pH in precipitation at Norwegian background stations in the period 1973-1997.

Figure 1.5 Annual weighted mean concentrations of non seasalt sulphate, nitrate and ammonium, averaged annual precipitation amounts and wet deposition of sulphate during the period 1974-1997, based on 7 representative stations in Southern Norway (Birkenes, Lista, Skreådalen, Vatnedalen, Treungen, Gulsvik, Løken).

Figure 1.6 Annual wet deposition of sulphate at the Norwegian EMEP-stations in the period 1973-1997.

Figure 2.1 Monthly mean concentrations of lead, cadmium, and zinc, in precipitation at Norwegian background stations in 1997.

Figure 2.2 Mean concentrations in precipitation of lead, cadmium and zinc at Norwegian stations in 1976, August 1978-June 1979, in 1980 (FebruaryDecember) and in the period 1981-1997.

Figure 3.1 Monthly mean concentrations of sulphur dioxide, particulate sulphate, nitrogen dioxide, (ammonium + ammonia) and (nitrate + nitric acid) in air at Norwegian background stations in 1997.

Figure 3.2 Total deposition (wet and dry) of sulphur-S $\left(\mathrm{SO}_{2}, \mathrm{SO}_{4}{ }^{2-}\right)$ and nitrogen- $\mathrm{N}\left(\mathrm{NO}_{2}, \mathrm{NH}_{4}{ }^{+}, \mathrm{NH}_{3}, \mathrm{NO}_{3}{ }^{-}, \mathrm{HNO}_{3}\right)$ on Norwegian background stations, 1997.

Figure 3.3 Annual mean concentrations of airborne particulate sulphate at Norwegian background stations in the period 1973-1997.

Figure 3.4 Annual mean concentrations of sulphur dioxide in air at Norwegian background stations in the period 1978-1997.

Figure 3.5 Mean concentrations of sulphur dioxide and particulate sulphate for the summer months (April-September) and winter months (October-March) in the period 1978-1997 at Birkenes and Jergul.

Figure 4.1 Monthly mean concentrations of ozone in $1997\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ at Prestebakke, Jeløya, Hurdal and Osen.

Figure 4.2 Monthly mean concentrations of ozone in $1997\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ at Langesund, Klyve and Haukenes.

Figure 4.3 Monthly mean concentrations of ozone in $1997\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ at Birkenes, Sandve, Voss and Kårvatn.

Figure 4.4 Monthly mean concentrations of ozone in 1997. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ at Tustervatn, Karasjok and Zeppelin-mountain.

Figure 4.5 Average diurnal variations of ozone $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ at Prestebakke, Jeløya, Hurdal and Osen, April-September 1997.

Figure 4.6 Average diurnal variations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) at Langesund, Klyve and Haukenes, April-September 1997.

Figure 4.7 Average diurnal variations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) Birkenes, Sandve, Voss and Kårvatn, April-September 1997.

Figure 4.8 Average diurnal variations of ozone ($\mu \mathrm{g} / \mathrm{m}^{3}$) at Tustervatn, Karasjok and Zeppelin-mountain, April-September 1997.

Figure 4.9 Average daytime 7 hour-concentrations of ozone (09-16 hours) for the growing season (in $\mu \mathrm{g} / \mathrm{m}^{3}$) at Jeløya and Birkenes, 1981-1997.

Figure 4.10 Number of days with 8 hour-mean concentrations of ozone higher than $60 \mu \mathrm{~g} / \mathrm{m}^{3}$, measured in the season April-September 1997.

Figure 4.11 Average daytime 7 hour-concentrations of ozone (09-16 hours) for the growing season April-September 1997, in $\mu \mathrm{g} / \mathrm{m}^{3}$.

Figure 5.1 Weekly air concentration of HCH (sum α - and γ-HCH) at Lista in 1997.

Figure 5.2 Weekly concentration in precipitation of HCH (sum $\alpha-$ and γ - HCH) at Lista in 1997. Missing data represent periods without precipitation.

Figure 5.3 Weekly air concentration of HCH (sum $\alpha-$ og $\gamma-\mathrm{HCH}$) in Ny -Ålesund in 1997.

Figure $5.4 \quad \alpha-\mathrm{HCH}$ in air during March-April in Ny-Ålesund.
Figure 5.5 Weekly air concentration of DDT (sum o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT and p,p'-DDT) in Ny -Ålesund in 1997.

Figure 5.6 Weekly air concentration of PCBs (sum PCB-28, -31, -52, -101, $-105,-118,-138,-153,-156$ og -180) in Ny-Ålesund in 1997.

Figure 5.7 Weekly air concentration of PAH (37 PAH components) in Ny-Ålesund in 1997.

Figure 5.8 Weekly air concentrations of 3- to 7-ring PAH at Ny-Ålesund in 1997.

Tables A.1.1-A.1.19 Monthly and annual mean concentrations and wet deposition of main compounds in precipitation, 1997.

Table A.1.20 The 10 largest daily wet depositions of non marine sulphate at Norwegian background stations in 1997.

Table A.1.21 Annual mean concentrations in precipitation, wet depositions and estimated dry deposition at Norwegian background stations during the period 1973-1997.

Tables A.2.1-A.2.16 Monthly and annual mean concentrations and wet deposition of trace elements in precipitation, 1997.

Table A.2.17 Mean concentrations of heavy metals in precipitation at Norwegian background stations in 1976, August 1978-June 1979, in 1980 (FebruaryDecember), and in the period 1981-1997.

Tables A.3.1-A.3.10 Monthly and annual mean concentrations of airborne compounds at Norwegian background stations in 1997.

Table A.3.11 Annual mean concentrations of sulphur and nitrogen compounds in air at Norwegian background stations during the period 1973-1997.
B. $1 \quad$ General information about the background stations in Norway in 1997.
B. 2 Monitoring programme at the Norwegian background stations in 1997.
C. Sampling, chemical analytical methods and quality control.

"Vedlegg A

Resultater fra overvåking av luft- og nedbørkjemi

Forklaring til A.1.1-A.2.16

På en del av stasjonene har det enkelte måneder vært få eller ingen tilfeller med tilstrekkelige nedbørmengder for analyser, eller alle konsentrasjonene har vært lavere enn deteksjonsgrensen. Disse tilfellene er behandlet på følgende måte:

Særtilfeller	Ikke nedbør- Parametertype	Ingen nedbør- nilfeller	Målt nedbør, for lite til, eller mangler analyse	Konsentrasjonen under deteksjons-grensen
Konsentrasjon	Åpen	-	-	$<$ (deteksjons-grense)
mm nedbør	Åpen	0	Tall	Tall
Våtavsetning	Åpen	0	-	Tall

* mm x 0,5 • deteksjonsgrensen.

Tabell A.1.1: Månedlige og årlige middelverdier av pH i nedbøren på norske bakgrunnsstasjoner, 1997.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	4.19	4.60	4.54	4.70	4.91	4.58	4.48	4.61	4.49	4.61	4.44	4.24	4.50
Søgne	4.16	4.47	4.44	4.51	4.81	4.46	4.26	4.45	4.36	4.53	4.32	4.63	4.46
Lista	4.25	4.65	4.44	4.72	4.82	4.33	4.66	4.40	4.59	4.56	4.42	4.55	4.52
Skreådalen	4.68	4.98	5.18	5.27	4.62	4.87	4.75	4.80	5.09	4.81	4.72	4.93	4.92
Valle	4.88	4.95	4.75	4.92	4.60	4.71	4.66	4.62	4.80	4.69	4.56	4.55	4.70
Vatnedalen	4.81	5.36	5.20	5.36	4.40	5.16	5.53	4.64	5.10	4.94	4.51	5.07	4.95
Treungen	4.45	4.65	4.51	5.54	4.56	4.68	4.74	4.58	4.60	4.48	4.42	4.47	4.56
Solhomfjell	4.55	4.65	4.58										
Møsvatn	4.69	5.02	4.91	4.80	4.45	4.91	4.75	4.89	4.95	4.75	4.53	4.70	4.77
Prestebakke	4.31	4.66	4.25	4.89	4.68	4.70	5.09	4.56	4.57	4.87	4.43	4.43	4.61
Lardal	4.35	4.49	4.30	4.70	4.80	4.83	4.81	4.38	4.64	4.68	4.33	4.45	4.52
Laken	4.33	4.63	5.05	5.97	5.00	4.78	4.99	4.51	4.52	4.74	4.58	4.44	4.63
Hurdal	4.49	4.60	4.49	-	5.01	4.82	4.89	4.44	4.57	4.78	4.34	4.56	4.63
Nordmoen	4.45	4.59	4.51	-	4.94	- 4.80	4.86	4.48	4.60	5.16	4.37	4.60	4.65
Fagernes	5.21	4.81	4.60	5.31	5.01	4.92	4.96	4.88	4.89	5.19	4.73	4.77	4.89
Gulsvik	5.33	4.67	-	4.43	5.00	4.79	4.75	4.71	4.96	4.59	4.59	4.76	4.74
Osen	4.71	4.68	4.81	4.89	4.95	4.87	4.92	4.90	4.96	5.10	4.57	4.60	4.83
Valdalen	4.92	4.80	4.64	4.88	4.74	5.22	5.11	4.91	5.04	5.20	4.72	4.75	4.89
Ualand	4.34	4.65	4.68	4.74	4.63	4.40	4.51	4.30	4.78	4.54	4.49	4.56	4.58
Vikedal	4.57	4.88	4.69	4.80	4.50	5.21	4.46	4.56	4.92	4.98	4.53	4.76	4.75
Haukeland	4.80	5.26	5.12	5.13	4.53	4.41	5.03	5.26	5.01	4.99	4.71	4.95	5.00
Voss	4.76	5.06	4.97	4.96	4.58	4.53	4.67	4.73	4.96	4.88	4.53	4.82	4.87
Nausta	4.75	5.22	5.00	5.10	4.76	4.71	4.89	4.88	5.23	5.04	4.62	5.04	5.01
Kărvatn	5.32	5.46	5.09	5.12	5.38	5.19	5.00	4.76	5.40	5.41	5.15	5.11	5.22
Selbu	5.14	5.22	5.20	5.15	5.31	5.46	5.41	5.82	5.67	5.19	5.07	4.76	5.26
Høylandet	5.08	5.44	5.14	5.55	5.53	5.70	5.00	5.02	5.13	5.75	5.20	5.57	5.25
Namsvatn	5.18	5.34	5.17										
Tustervatn	5.34	5.46	5.41	5.41	5.65	5.27	5.08	5.32	5.22	5.46	4.96	5.38	5.34
Øverbygd	5.15	5.14	5.07	5.01	5.31	5.42	4.80	4.82	5.32	5.55	5.47	5.30	5.13
Karpdalen	4.89	4.95	4.46	4.61	3.70	3.87	5.04	4.43	4.51	4.70	4.79	5.07	4.56
Karasjok	5.13	4.92	5.00	5.05	4.84	4.16	4.45	5.05	5.10	5.07	5.03	5.52	5.03
Svanvik	5.08	4.96	4.74	4.54	4.32	4.84	4.75	4.63	4.79	4.95	5.35	5.65	4.79
Ny-Alesund	5.40	4.73	5.46	5.67	4.88	5.66	6.38	6.36	6.12	7.52	6.47	5.66	5.60

Tabell A.1.2: Månedlige og årlige middelkonsentrasjoner av sulfat i nedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg S/l, korrigert for sjøsalt.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÁR
Birkenes	1.00	0.42	0.46	0.22	0.20	0.60	0.54	0.63	0.45	0.46	0.59	0.73	0.52
Sagne	1.20	0.55	0.91	0.60	0.38	1.06	1.08	0.76	0.54	0.56	0.66	0.62	0.67
Lista	0.96	0.37	0.41	0.49	0.39	1.34	0.62	0.93	0.44	0.36	0.47	0.38	0.55
Skreádalen	0.35	0.19	0.19	0.29	0.44	0.61	0.57	0.57	0.06	0.23	0.24	0.24	0.25
Valle	0.27	0.10	0.26	0.17	0.41	0.75	0.27	0.48	0.18	0.30	0.28	0.36	0.30
Vatnedalen	0.19	0.15	0.15	0.51	0.82	0.40	0.42	0.44	0.17	0.11	0.27	0.09	0.24
Treungen	0.50	0.24	0.55	0.06	0.41	0.55	0.27	0.55	0.43	0.31	0.50	0.45	0.41
Solhomfjell	0.57	0.38	1.01										
Møsvatn	0.15	0.05	0.09	0.04	0.53	. 0.53	0.25	0.03	0.11	0.17	0.22	0.11	0.21
Prestebakke	1.02	. 0.78	1.50	0.83	0.50	0.43	0.37	0.75	0.40	0.51	0.45	0.63	0.58
Lardal	0.61	0.41	1.04	0.99 *	0.29	0.33	0.26	0.62	0.36	0.22	0.56	0.40	0.42
Løken	0.68	0.35	0.80	0.44	0.23	0.39	0.30	0.73	0.39	0.26	0.49	0.49	0.42
Hurdal	0.42	0.28	0.56	.	0.14	0.37	0.32	0.52	0.36	0.27	0.44	0.34	0.33
Nordmoen	0.44	0.26	0.56	-	0.17	0.38	0.35	0.59	0.33	0.10	0.44	0.33	0.32
Fagernes	0.04	0.08	0.32	0.33	-0.15	0.35	0.18	0.28	0.17	0.10	0.17	0.10	0.21
Gulsvik	0.15	0.30	.	1.66	0.57	0.49	0.23	0.46	0.18	0.31	0.36	0.29	0.35
Osen	0.13	0.16	0.24	0.22	0.14	0.28	0.28	0.50	0.03	0.18	0.33	0.19	0.22
Valdalen	0.12	0.09	0.31	0.19	0.42	0.33	0.24	0.39	0.18	0.09	0.22	0.16	0.26
Ualand	0.54	0.38	0.69	0.67	0.40	1.12	0.51	0.97	0.24	0.33	0.32	0.35	0.44
Vikedal	0.42	0.21	0.39	0.43	0.55	0.67	0.49	0.58	0.46	0.18	0.37	0.24	0.35
Haukeland	0.21	0.14	0.19	0.20	0.60	0.87	0.35	0.66	0.15	0.16	0.27	0.14	0.22
Voss	0.17	0.08	0.12	0.15	0.48	0.92	0.32	0.32	0.14	0.13	0.23	0.12	0.17
Nausta	0.17	0.07	0.13	0.18	0.28	0.48	0.30	0.40	0.09	0.10	0.22	0.07	0.15
Kårvatn	0.08	0.05	0.13	0.16	0.10	0.36	0.27	0.35	0.01	0.03	0.10	0.04	0.09
Selbu	0.07	0.03	0.10	0.18	0.17	0.22	0.30	0.01	0.07	0.08	0.18	0.15	0.11
Heylandet	0.12	0.07	0.19	0.15	0.19	0.26	0.25	0.00	0.14	0.07	0.14	0.09	0.14
Namsvatn	0.06	0.06	0.13										
Tustervatn	0.04	0.04	0.09	0.17	0.07	0.19	0.14	0.11	0.07	0.07	0.15	0.08	0.08
Øverbygd	0.06	0.07	0.09	0.22	0.17	1.08	0.28	0.06	0.06	0.06	0.06	0.13	0.10
Karpdalen	0.27	0.30	0.70	0.99	3.67	8.11	0.36	0.71	0.61	0.46	0.27	0.24	0.56
Karasjok	0.04	0.05	0.16	0.25	0.39	-	0.64	0.08	0.14	0.23	0.16	0.03	0.15
Svanvik	0.18	0.29	0.51	1.06	1.48	1.16	0.47	0.66	0.39	0.27	0.25	0.27	0.48
Ny-Alesund	0.15	0.47	.	0.75	1.25	0.25	0.86	0.65	0.07	.	0.42	0.03	0.34

Tabell A.1.3: Månedlige og årlige middelkonsentrasjoner av nitrat i nedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg N/l.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0.96	0.43	0.39	0.18	0.30	0.24	0.47	0.56	0.45	0.45	0.63	0.79	0.50
Sagne	1.25	0.61	0.82	0.46	0.31	0.36	0.93	0.48	0.56	0.51	0.75	0.72	0.60
Lista	1.03	0.46	0.87	0.34	0.46	0.96	0.69	0.50	0.42	0.33	0.70	0.53	0.55
Skreádalen	0.36	0.15	0.15	0.16	0.59	0.40	0.50	0.35	0.16	0.20	0.34	0.23	0.23
Valle	0.34	0.14	0.27	0.16	0.45	0.23	0.13	0.29	0.18	0.20	0.39	0.42	0.26
Vatnedalen	0.22	0.09	0.08	0.17	0.91	0.15	0.19	0.24	0.02	0.09	0.42	0.15	0.15
Treungen	0.66	0.28	0.45	0.08	0.50	0.28	0.19	0.33	0.34	0.29	0.63	0.44	0.37
Solhomfjell	0.63	0.31	0.78										
Mesvatn	0.26	0.12	0.17	0.09	0.58	0.18	0.17	0.20	0.17	0.20	0.34	0.24	0.22
Prestebakke	1.10	0.68	1:33	0.43	-0.42	0.16	$\therefore 0.08$	$=0.29$	0.29	0.48	0.65	0.66	0.45
Lardal	0.62	0.37	0.66	0.57	0:30	0.13	0.22	0.43	0.28	0.19	0.77	0.43	0.39
Laken	0.80	0.41	0.96	0.35	0.24	0.30	0.20	0.51	0.31	0.23	0.61	0.64	0.40
Hurdal	0.53	0.34	0.42	-	0.19	0.15	0.14	0.37	0.28	0.24	0.67	0.39	0.31
Nordmoen	0.62	0.34	0.46	-	0.23	0.19	0.20	0.42	0.28	0.10	0.70	0.45	0.33
Fagernes	0.19	0.23	0.42	0.13	0.18	0.08	0.04	0.13	0.07	0.01	0.31	0.33	0.15
Gulsvik	0.38	0.43	-	1.24	0.52	0.14	0.14	0.32	0.18	0.32	0.49	0.48	0.32
Osen	0.30	0.25	0.24	0.24	0.15	0.11	0.12	0.25	0.08	0.16	0.36	0.33	0.20
Valdalen	0.23	0.26	0.29	0.14	0.32	0.14	0.17	0.17	0.12	0.14	0.32	0.32	0.21
Ualand	0.52	0.18	0.58	0.55	0.43	0.66	0.44	0.51	0.19	0.32	0.44	0.32	0.33
Vīkedal	0.36	0.14	0.17	0.28	0.57	0.37	0.35	0.35	0.09	0.10	0.46	0.20	0.20
Haukeland	0.19	0.09	0.12	0.11	0.49	0.46	0.19	0.37	0.11	0.12	0.30	0.14	0.15
Voss	0.15	0.07	0.11	0.12	0.42	0.40	0.21	0.19	0.12	0.11	0.37	0.16	0.14
Nausta	0.18	0.07	0.10	0.09	0.27	0.19	0.18	0.22	0.09	0.11	0.34	0.12	0.12
Kårvatn	0.07	0.04	0.05	0.04	0.09	0.17	0.16	0.27	0.05	0.02	0.08	0.13	0.06
Selbu	0.04	0.05	0.05	0.06	0.13	0.06	0.10	0.06	0.01	0.09	0.12	0.23	0.06
Hoylandet	0.15	0.11	0.08	0.07	0.13	0.13	0.10	0.12	0.07	0.08	0.19	0.19	0.10
Namsvatn	0.08	0.07	0.07										
Tustervatn	0.06	0.05	0.05	0.06	0.05	0.12	0.11	0.08	0.08	0.07	0.10	0.10	0.06
Overbygd	0.05	0.07	0.06	0.06	0.16	0.43	0.09	0.12	0.00	0.04	0.04	0.12	0.06
Karpdalen	0.12	0.14	0.11	0.28	0.68	1.23	0.17	0.14	0.03	0.11	0.10	0.19	0.13
Karasjok	0.19	0.13	0.18	0.11	0.14	0.00	0.10	0.08	0.07	0.15	0.20	0.08	0.11
Svanvik	0.18	0.14	0.10	0.18	0.25	0.22	0.24	0.11	0.09	0.13	0.14	0.19	0.14
Ny-Ålesund	0.01	0.01	.	0.14	0.50	0.08	0.20	0.17	0.05	.	0.16	0.05	0.10

Tabell A.1.4: Månedlige og årlige middelkonsentrasjoner av ammonium i nedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg N/.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÁR
Birkenes	0.91	0.38	0.35	0.12	0.21	0.28	0.41	0.72	0.36	0.47	0.59	0.55	0.45
Sogne	1.24	0.50	0.88	0.35	0.64	0.49	1.06	0.71	0.37	0.48	0.59	0.92	0.63
Lista	0.93	0.64	0.86	0.34	0.38	0.72	0.85	0.68	0.26	0.24	0.62	0.46	0.56
Skreádalen	0.36	0.30	0.26	0.40	0.44	0.41	0.68	0.57	0.18	0.17	0.25	0.24	0.29
Valle	0.32	0.09	0.18	0.09	0.48	0.20	0.11	0.35	0.20	0.13	0.23	0.23	0.20
Vatnedalen	0.21	0.15	0.07	0.47	0.79	0.28	0.26	0.14	0.03	0.01	0.16	0.15	0.14
Treungen	0.41	0.18	0.44	0.06	0.38	0.33	0.16	0.44	0.38	0.14	0.50	0.31	0.32
Solhomfjell	0.63	0.33	0.94										
Masvatn	0.07	0.06	0.09	0.03	0.74	0.19	40.17	0.33	0.13	0.09	0.15	0.04	0.18
Prestebakke	1.07	0.44	1.57	0.35	0.73	0.07	0.44	0.39	- 0.24	0.45	0.35	0.87	0.43
Lardal	0.40	0.22	0.80	0.55	0.38	0.13	0.23	0.41	0.27	0.04	0.54	0.25	0.29
Laken	0.68	0.42	0.50	0.33	0.23	0.39	0.32	0.72	0.26	0.15	0.57	0.52	0.41
Hurdal	0.30	0.24	0.39	.	0.34	0.15	0.24	0.29	0.23	0.16	0.37	0.25	0.26
Nordmoen	0.48	0.15	0.39	\cdot	0.15	0.18	0.32	0.37	0.23	0.08	0.43	0.23	0.24
Fagernes	0.27	0.22	0.20	0.27	0.33	0.13	0.07	0.15	0.09	0.03	0.18	0.19	0.16
Gulsvik	0.42	0.27	-	0.30	0.70	0.25	0.22	0.49	0.17	0.24	0.33	0.44	0.33
Osen	0.18	0.18	0.13	0.12	0.10	0.13	0.23	0.40	0.15	0.10	0.20	0.14	0.18
Valdalen	0.18	0.10	0.17	0.09	0.28	0.18	0.34	0.36	0.18	0.09	0.15	0.14	0.22
Ualand	0.34	0.21	0.62	0.68	0.69	0.51	0.45	0.67	0.20	0.22	0.23	0.16	0.32
Vikedal	0.40	0.23	0.31	0.33	0.62	0.60	0.28	0.47	0.19	0.19	0.24	0.14	0.28
Haukeland	0.16	0.24	0.20	0.17	0.46	0.58	0.53	1.05	0.14	0.13	0.29	0.15	0.24
Voss	0.12	0.04	0.09	0.12	0.65	0.38	0.17	0.19	0.09	0.06	0.18	0.05	0.12
Nausta	0.12	0.05	0.10	0.12	0.48	0.22	0.23	0.33	0.11	0.08	0.16	0.07	0.13
Kårvatn	0.14	0.18	0.11	0.07	0.11	0.36	0.30	0.32	0.10	0.05	0.10	0.13	0.11
Selbu	0.10	0.05	0.05	0.07	0.49	0.04	0.10	0.56	0.04	0.07	0.09	0.07	0.10
Hgylandet	0.26	0.29	0.22	0.22	0.51	0.10	0.15	0.15	0.13	0.20	0.27	0.33	0.22
Namsvatn	0.14	0.13	0.13										
Tustervatn	0.16	0.19	0.16	0.21	0.15	0.22	0.30	0.16	0.16	0.18	0.11	0.27	0.18
Øverbygd	0.12	0.06	0.05	0.10	0.40	0.86	0.05	0.27	0.08	0.02	0.10	0.12	0.11
Karpdalen	0.12	0.22	0.17	0.26	1.10	1.66	0.26	0.11	0.07	0.08	0.05	0.22	0.14
Karasjok	0.04	0.16	0.14	0.10	0.08	-	0.30	0.11	0.14	0.15	0.15	0.15	0.13
Svanvik	0.26	0.17	0.30	0.55	0.80	0.39	0.37	0.34	0.19	0.21	0.23	0.35	0.29
$\mathrm{Ny} y$-Álesund	0.22	0.21	.	0.16	0.48	0.02	0.73	1.74	0.13	.	0.20	0.03	0.44

Tabell A.1.5: Månedlige og årlige middelkonsentrasjoner av kalsium i nedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0.09	0.10	0.19	0.05	0.06	0.13	0.13	0.13	0.07	0.10	0.09	0.06	0.10
Søgne	0.36	0.30	0.45	0.20	0.03	0.20	0.30	0.14	0.16	0.12	0.19	0.16	0.20
Lista	0.59	2.27	3.35	0.50	0.31	0.61	0.39	0.21	1.68	0.54	0.41	0.31	0.94
Skreådalen	0.12	0.27	0.37	0.32	0.13	0.35	0.24	0.14	0.12	0.14	0.05	0.14	0.21
Valle	0.11	0.16	0.18	0.09	0.08	0.30	0.09	0.11	0.02	0.04	0.09	0.11	0.12
Vatnedalen	0.12	0.34	0.25	0.63	0.38	0.29	0.56	0.22	0.03	0.04	0.15	0.04	0.22
Treungen	0.21	0.14	0.17	0.19	0.07	0.16	0.22	0.14	0.07	0.02	0.08	0.04	0.12
Solhomfjell	0.21	0.11	0.32										
Møsvatn	0.10	0.08	0.06	0.04	0.04	0.21	0.09	0.12	0.04	0.03	0.02	0.0 .1	0.08
Prestebakke	0.48	1.00	0.37	*0.75	0.04	0.06	0.20	0.22	0.14	0.54	0.16	0.14	0.31
Lardal	0.29	0.10	0.30	0.69	0.05	0.02	0.15	0.18	0.06	0.01	0.11	0.03	0.08
Løken	0.14	0.14	0.80	0.94	0.07	0.19	0.22	0.21	0.14	0.09	0.31	0.09	0.16
Hurdal	0.16	0.08	0.10	-	0.01	0.05	0.16	0.18	0.04	0.04	0.04	0.05	0.07
Nordmoen	0.16	0.08	0.20	-	0.18	0.06	0.19	0.25	0.09	0.06	0.06	0.14	0.12
Fagernes	0.18	0.09	0.16	0.32	0.02	0.13	0.11	0.08	0.05	0.05	0.14	0.07	0.09
Gulsvik	0.18	0.11	-	1.23	0.15	0.19	0.13	0.06	0.06	0.12	0.14	0.08	0.12
Osen	0.09	0.09	0.21	0.20	0.02	0.20	0.14	0.17	0.02	0.13	0.16	0.03	0.10
Valdalen	0.07	0.05	0.09	0.17	0.20	0.19	0.20	0.18	0.02	0.12	0.10	0.07	0.13
Ualand	0.08	0.20	0.66	0.35	0.03	0.41	0.12	0.18	0.19	0.10	0.03	0.07	0.19
Vikedal	0.08	0.25	0.38	0.38	0.06	0.31	0.16	0.10	0.41	0.12	0.35	0.05	0.24
Haukeland	0.15	0.30	0.14	0.23	0.07	0.14	0.16	0.14	0.12	0.12	0.05	0.03	0.16
Voss	0.06	0.12	0.08	0.04	0.08	0.28	0.15	0.05	0.05	0.03	0.06	0.03	0.08
Nausta	0.14	0.20	0.10	0.14	0.03	0.06	0.12	0.05	0.09	0.10	0.08	0.03	0.11
Kårvatn	0.27	0.25	0.13	0.17	0.04	0.21	0.12	0.08	0.05	0.08	0.11	0.06	0.12
Selbu	0.20	0.15	0.17	0.22	0.06	0.15	0.44	0.36	0.13	0.08	0.20	0.15	0.16
Høylandet	0.19	0.25	0.16	0.20	0.10	0.40	0.16	0.13	0.08	0.15	0.17	0.15	0.17
Namsvatn	0.10	0.11	0.12										
Tustervatn	0.20	0.19	0.25	0.19	0.05	0.33	0.17	0.08	0.10	0.13	0.07	0.10	0.17
Overbygd	0.13	0.08	0.27	0.10	0.10	0.57	0.15	0.08	0.09	0.30	0.21	0.38	0.16
Karpdalen	0.27	0.20	0.25	0.27	0.26	0.85	0.29	0.13	0.08	0.15	0.26	0.21	0.18
Karasjok	0.32	0.14	0.23	0.31	0.06	-	0.14	0.05	0.06	0.07	0.09	0.08	0.10
Svanvik	0.12	0.15	0.35	0.29	0.27	0.43	0.22	0.15	0.07	0.17	0.39	0.37	0.20
Ny-Ȧlesund	0.79	0.21	.	1.58	0.81	0.35	3.77	0.74	4.54	.	0.91	0.69	1.46

Tabell A.1.6: Månedlige og årlige middelkonsentrasjoner av kalium inedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg/l.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÁR
Birkenes	0.11	0.10	0.16	0.05	0.08	0.12	0.17	0.07	0.06	0.04	0.10	0.09	0.09
Sagne	0.36	0.28	0.42	0.10	0.10	0.14	0.12	0.07	0.23	0.15	0.15	0.25	0.21
Lista	0.53	1.97	2.95	0.38	0.25	0.31	0.30	0.14	1.43	0.50	0.41	0.29	0.81
Skreádalen	0.22	0.27	0.37	0.47	0.18	0.24	0.35	0.20	0.20	0.21	0.10	0.22	0.25
Valle	0.11	0.11	0.12	0.07	0.06	0.10	0.03	0.09	0.06	0.05	0.02	0.10	0.08
Vatnedalen	0.06	0.13	0.10	0.39	0.20	0.20	0.22	0.09	0.10	0.10	0.06	0.04	0.12
Treungen	0.05	0.05	0.06	0.02	0.05	0.06	0.02	0.04	0.10	0.01	0.04	0.02	0.04
Solhomfjell	0.29	0.12	0.29										
Mresvatn	0.04	0.06	0.05	0.01	0.11	0.04	0.05	0.07	0.04	0.01	0.02	0.02	0.05
Prestebakke	0.44	0.19	0.19	$0.17{ }^{\text {k }}$ \%	0:06	0.09	0.45	0.27	. 0.14	. 0.23	0.06	0.26	0.18
Lardal	0.08	0.06	0.08	0.09	0.04	'0.03	0.06	0.05	0.03	0.01	0.06	0.03	0.04
Løken	0.12	0.10	0.27	0.19	0.08	0.25	0.12	0.13	0.09	0.07	0.20	0.11	0.12
Hurdal	0.09	0.03	0.05	.	0.01	0.05	0.02	0.08	0.04	0.03	0.03	0.06	0.04
Nordmoen	0.06	0.03	0.04	-	0.03	0.09	0.05	0.11	0.04	0.05	0.07	0.13	0.06
Fagornes	0.06	0.02	0.07	0.15	0.02	0.06	0.04	0.03	0.02	0.05	0.02	0.02	0.04
Gulsvik	0.13	0.06	.	0.79	0.28	0.10	0.05	0.06	0.06	0.03	0.11	0.27	0.11
Osen	0.04	0.04	0.03	0.08	0.05	0.05	0.10	0.08	0.03	0.23	0.05	0.09	0.07
Valdalen	0.08	0.03	0.05	0.07	0.05	0.21	0.19	0.09	0.07	0.07	0.08	0.07	0.08
Ualand	0.04	0.16	0.40	0.23	0.05	0.09	0.04	0.07	0.14	0.09	0.02	0.06	0.13
Vikedal	0.08	0.15	0.29	0.14	0.08	0.50	0.07	0.07	0.06	0.09	0.04	0.03	0.13
Haukeland	0.10	0.26	0.09	0.15	0.13	0.17	0.18	0.13	0.12	0.07	0.06	0.04	0.13
Voss	0.05	0.08	0.06	0.04	0.11	0.28	0.10	0.04	0.03	0.02	0.02	0.02	0.06
Nausta	0.10	0.18	0.07	0.09	0.04	0.20	0.09	0.06	0.07	0.04	0.04	0.01	0,08
Kårvatn	0.33	0.25	0.11	0.19	0.17	0.28	0.07	0.09	0.03	0.07	0.08	0.12	0.12
Selbu	0.16	0.08	0.05	0.12	0.06	0.03	0.05	0.66	0.04	0.05	0.03	0.05	0.10
Høylandet	0.19	0.26	0.16	0.09	0.18	0.12	0.14	0.10	0.09	0.11	0.12	0.09	0.14
Namsvatn	0.07	0.09	0.08										
Tustervatn	0.20	0.15	0.24	0.11	0.10	0.24	0.29	0.14	0.12	0.12	0.10	0.11	0.17
Øverbygd	0.12	0.07	0.32	0.07	0.11	0.99	0.13	0.09	0.06	0.11	0.09	0.25	0.13
Karpdalen	0.23	0.18	0.25	0.22	0.23	0.71	0.10	0.05	0.06	0.17	0.18	0.25	0.15
Karasjok	0.06	0.05	0.21	0.15	0.25	-	0.22	0.12	0.20	0.21	0.24	0.16	0.17
Svanvik	0.07	0.04	0.14	0.09	0.06	0.18	0.16	0.09	0.05	0.08	0.12	0.19	0.09
Ny-Ålesund	0.47	0.10	.	0.58	0.23	0.20	0.57	0.73	0.16	.	0.76	0.41	0.52

Tabell A.1.7: Månedlige og årlige middelkonsentrasjoner av magnesium i nedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg/l.

STAAṠJÓN	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0.07	0.23	0.40	0.04	0.05	0.04	0.04	0.05	0.09	0.06	0.13	0.10	0.13
Søgne	0.30	0.74	1.12	0.17	0.03	0.06	0.14	0.06	0.31	0.21	0.26	0.21	0.34
Lista	1.43	7.01	9.45	1.29	0.63	0.72	0.43	0.21	4.65	1.43	1.04	0.82	2.54
Skreâdalen	0.11	0.60	0.81	0.32	0.07	0.10	0.05	0.03	0.20	0.16	0.05	0.05	0.33
Valle	0.09	0.29	0.33	0.11	0.05	0.03	0.02	0.02	0.04	0.03	0.04	0.06	0.11
Vatnedalen	0.05	0.23	0.17	0.26	0.15	0.03	0.12	0.04	0.04	0.02	0.04	0.01	0.10
Treungen	0.08	0.16	0.20	0.09	0.05	0.03	0.01	0.02	0.02	0.02	0.07	0.02	0.06
Solhomfjell	0.22	0.17	0.31										
Møsvatn	0.04	0.11	0.06	0.04	0.04	.0.02	0.00	0.01	0.01	0.01	0.02	0.01	0.03
Prestebakke	0.27	0.40	0.29	0.39	0.02	' 0.03	0.05	- 0.07	$0: 21$	0.18	0.06	0.16 :	0.17
Lardal	0.15	0.16	0.32	0.20	0.02	0.01	0.02	0.05	0.04	0.00	0.08	0.02	0.06
Loken	0.07	0.14	0.59	0.19	0.02	0.04	0.04	0.05	0.09	0.04	0.05	0.05	0.06
Hurdal	0.04	0.06	0.07	.	0.01	0.01	0.01	0.03	0.02	0.02	0.03	0.02	0.02
Nordmoen	0.08	0.06	0.14	-	0.09	0.01	0.02	0.05	0.02	0.02	0.03	0.02	0.04
Fagernes	0.20	0.07	0.07	0.20	0.01	0.02	0.02	0.01	0.01	0.01	0.02	0.01	0.02
Gulsvik	0.09	0.06	-	0.38	0.06	0.04	0.02	0.03	0.05	0.02	0.04	0.03	0.04
Osen	0.02	0.04	0.08	0.05	0.01	0.04	0.01	0.02	0.01	0.04	0.02	0.01	0.02
Valdalen	0.10	0.05	0.08	0.16	0.05	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.03
Ualand	0.10	0.56	1.29	0.73	0.05	0.06	0.04	0.05	0.32	0.25	0.09	0.17	0.36
Vikedal	0.16	0.55	0.93	0.46	0.07	0.08	0.05	0.02	0.40	0.28	0.11	0.09	0.39
Haukeland	0.27	0.80	0.31	0.38	0.08	0.03	0.06	0.05	0.31	0.18	0.08	0.05	0.34
Voss	0.15	0.32	0.17	0.07	0.03	0.05	0.03	0.01	0.09	0.05	0.03	0.02	0.14
Nausta	0.29	0.61	0.21	0.27	0.02	0.03	0.02	0.03	0.16	0.10	0.10	0.03	0.23
Kårvatn	0.62	0.54	0.24	0.42	0.06	0.05	0.04	0.02	0.08	0.18	0.07	0.05	0.23
Selbu	0.53	0.24	0.17	0.35	0.07	0.03	0.23	0.09	0.14	0.14	0.07	0.12	0.20
Haylandet	0.55	0.70	0.47	0.27	0.30	0.03	0.03	0.12	0.20	0.18	0.17	0.12	0.32
Namsvatn	0.27	0.29	0.32										
Tustervatn	0.45	0.37	0.57	0.21	0.05	0.03	0.02	0.05	0.17	0.18	0.07	0.07	0.30
Øverbygd	0.36	0.15	0.97	0.21	0.03	0.37	0.03	0.06	0.11	0.21	0.18	0.54	0.28
Karpdalen	0.56	0.46	0.61	0.46	0.33	0.76	0.08	0.08	0.08	0.34	0.54	0.39	0.30
Karasjok	0.08	0.14	0.25	0.24	0.04	0.00	0.05	0.02	0.02	0.08	0.05	0.03	0.06
Svanvik	0.27	0.18	0.50	0.23	0.13	0.17	0.06	0.05	0.03	0.19	0.19	0.19	0.14
Ny -Ålesund	11.90	0.33	-	1.89	0.55	0.22	1.47	0.65	0.70	.	1.74	1.21	2.98

Tabell A.1.8: Månedlige og årlige middelkonsentrasjoner av natrium i nedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg/l.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÁR
Birkenes	0.61	1.88	3.33	0.30	0.47	0.31	0.43	0.46	0.74	0.49	1.14	0.91	1.08
Sagne	2.06	6.30	9.33	1.21	0.66	0.44	0.82	0.43	2.43	1.56	2.26	1.80	2.81
Lista	12.44	55.46	70.36	10.28	5.97	5.72	3.33	1.79	38.90	12.62	9.09	7.10	20.46
Skreådalen	1.04	4.71	7.70	3.09	0.86	0.39	0.57	0.32	1.66	1.52	0.50	0.61	2.88
Valle	0.68	2.16	2.36	0.75	0.49	0.12	0.08	0.14	0.34	0.20	0.29	0.45	0.79
Vatnedalen	0.56	2.14	1.92	3.19	1.60	0.12	1.43	0.55	0.56	0.13	0.25	0.09	1.07
Treungen	0.53	0.79	1.20	0.06	0.36	0.08	0.06	0.14	0.23	0.15	0.62	0.18	0.35
Solhomfjell	0.68	1.49	2.38										
Mesvatn	0.14	0.67	0.42	0.14	0.60	0.07	0.05	0.04	0.11	0.04	0.17	0.04	0.20
Prestebakke	1.76	2.72	2.07	2.98	0.39	0.13	0.24	0.21	1.72	1.23	0.49	1.02	1.22
Lardal	0.26	1.20	1.09	0.23	0.13	0.04	0.14	0.14	0.31	0.08	0.64	0.17	0.38
Løken	0.51	1.10	2.64	1.23	0.18	0.18	0.24	0.45	0.67	0.35	0.41	0.48	0.50
Hurdal	0.22	0.31	0.46		0.04	0.09	0.04	0.14	0.13	0.15	0.26	0.22	0.16
Nordmoen	0.17	0.37	0.60	-	0.07	0.08	0.05	0.21	0.15	0.15	0.26	0.29	0.19
Fagernes	0.11	0.16	0.27	0.47	0.06	0.04	0.05	0.04	0.07	0.09	0.18	0.03	0.07
Gulsvik	0.15	0.39	.	1.42	0.38	0.09	0.04	0.06	0.29	0.11	0.19	0.24	0.18
Osen	0.13	0.24	0.14	0.22	0.08	0.06	0.05	0.05	0.04	0.15	0.12	0.11	0.10
Valdalen	0.88	0.24	0.50	1.16	0.22	0.18	0.18	0.06	0.11	0.22	0.21	0.12	0.21
Ualand	0.75	4.56	10.80	5.84	0.49	0.27	0.25	0.32	2.64	2.03	0.72	1.48	2.96
Vikedal	1.40	4.40	8.15	3.50	0.82	0.38	0.31	0.16	2.80	2.30	0.77	0.72	3.13
Haukeland	1.92	6.19	2.16	2.82	0.72	0.18	0.36	0.34	2.39	1.49	0.64	0.38	2.52
Voss	1.29	2.40	1.34	0.69	0.37	0.11	0.14	0.10	0.70	0.36	0.25	0.16	1.10
Nausta	2.61	5.18	1.68	2.27	0.28	0.08	0.13	0.27	1.35	0.82	0.55	0.16	1.93
Kảrvatn	5.31	4.00	1.58	3.35	0.81	0.25	0.25	0.16	0.62	1.52	0.64	0.49	1.80
Selbu	4.35	1.87	1.16	2.99	1.51	0.10	0.25	0.36	0.86	1.04	0.47	0.94	1.47
Høylandet	4.43	5.82	3.71	1.97	4.01	0.13	0.17	0.93	1.65	1.50	1.29	0.92	2.61
Namsvatn	1.93	2.32	2.29										
Tustervatn	3.44	2.61	4.45	1.59	0.89	0.20	0.23	0.44	1.34	1.44	0.50	0.58	2.30
Overbygd	2.87	1.02	8.68	1.58	0.46	2.57	0.14	0.41	0.83	1.52	1.47	4.69	2.27
Karpdalen	4.76	3.78	5.02	3.62	2.36	5.16	0.51	0.49	0.57	2.82	4.54	3.33	2.45
Karasjok	0.35	0.51	1.82	0.72	0.48	\cdot	0.20	0.21	0.20	0.83	0.50	0.24	0.42
Svanvik	1.85	0.98	3.54	1.50	1.01	0.93	0.21	0.21	0.13	1.48	1.57	1.62	0.92
Ny-Alesund	99.52	2.48	-	15.41	3.01	1.93	5.41	4.05	3.64	-	10.37	9.80	21.80

Tabell A.1.9: Månedlige og årlige middelkonsentrasjoner av klorid i nedbør på norske bakgrunnsstasjoner, 1997.
Enhet: mg/l.

STĀS̄JŌN	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	1.18	3.91	6.60	0.54	0.81	0.55	0.66	0.69	1.33	0.90	1.99	1.63	2.06
Søgne	3.90	11.44	18.42	2.40	1.21	0.78	1.28	0.81	4.54	3.16	3.87	3.12	5.22
Lista	25.79	116.77	163.83	19.17	10.95	10.10	5.17	2.74	75.05	22.99	15.43	12.45	41.69
Skreảdalen	2.15	9.13	14.23	5.91	1.49	0.59	0.79	0.52	3.25	2.81	0.82	0.98	5.43
Valle	1.29	4.05	4.82	1.33	0.80	0.20	0.11	0.24	0.63	0.37	0.55	0.83	1.49
Vatnedalen	0.96	3.96	3.39	4.71	2.25	0.15	1.49	0.62	0.63	0.23	0.51	0.16	1.76
Treungen	1.16	1.65	2.33	0.10	0.52	0.16	0.11	0.27	0.43	0.31	1.15	0.43	0.69
Solhomfjell	1.16	3.00	4.46										
Møsvatn	0.29	1.24	0.77	0.26	0.91	0.11	0.09	0.06	0.20	0.13	0.33	0.12	0.36
Prestebakke	3.87	6.14	3.94	5.70	0.67	0.21	0.37	0.34	3.18	2.34	0.75	1.62	2.43
Lardal	0.57	2.29	1.96	0.46	0.15	0.07	0.23	0.25	0.56	0.18	1.08	0.37	0.69
Løken	1.01	2.05	4.15	2.32	0.31	0.28	0.33	0.64	1.28	0.63	0.71	0.84	0.89
Hurdal	0.46	0.61	0.84	-	0.09	0.13	0.07	0.26	0.20	0.26	0.46	0.37	0.29
Nordmoen	0.38	0.68	1.12	-	0.13	0.14	0.09	0.26	0.26	0.26	0.45	0.51	0.33
Fagernes	0.15	0.36	0.55	0.83	0.15	0.06	0.09	0.09	0.10	0.19	0.21	0.09	0.13
Gulsvik	0.27	1.02	-	1.42	0.60	0.14	0.05	0.09	0.12	0.25	0.38	0.51	0.30
Osen	0.21	0.45	0.30	0.32	0.18	0.10	0.10	0.11	0.07	0.28	0.23	0.23	0.19
Valdalen	1.65	0.37	0.84	1.99	0.32	0.30	0.25	0.09	0.17	0.41	0.34	0.22	0.35
Ualand	1.39	10.57	22.63	11.13	0.75	0.31	0.37	0.59	5.36	3.98	1.19	2.63	6.22
Vikedal	2.89	9.59	16.74	6.59	1.32	0.58	0.56	0.29	5.15	4.41	1.39	1.29	6.34
Haukeland	3.87	12.19	4.20	5.46	1.32	0.30	0.61	0.55	4.68	2.80	1.10	0.68	4.92
Voss	2.55	4.89	2.65	1.31	0.64	0.19	0.18	0.20	1.23	0.75	0.50	0.28	2.19
Nausta	5.83	10.43	3.27	4.23	0.55	0.12	0.24	0.56	2.55	1.59	0.99	0.28	3.85
Kárvatn	11.01	7.77	3.30	6.52	1.58	0.42	0.39	0.25	1.16	2.82	1.10	0.86	3.52
Selbu	9.88	3.65	2.27	5.99	3.02	0.18	0.50	1.02	1.60	2.00	0.83	1.61	3.01
Høylandet	8.69	12.26	7.36	3.68	7.71	0.26	0.33	1.76	3.35	2.83	2.32	1.69	5.17
Namsvatn	3.83	4.24	4.77										
Tustervatn	6.99	4.87	9.11	3.04	1.80	0.37	0.40	0.83	2.74	2.80	0.87	1.03	4.59
Øverbygd	6.12	1.85	18.09	3.21	0.82	4.13	0.16	0.71	1.47	2.98	2.57	8.55	4.58
Karpdalen	10.48	8.61	10.17	5.80	3.62	6.06	0.76	0.80	0.99	5.39	7.75	5.79	4.70
Karasjok	0.72	1.06	3.84	1.29	0.74	-	0.20	0.29	0.33	1.41	0.82	0.41	0.74
Svanvik	3.62	1.85	7.62	2.75	1.76	1.21	0.27	0.33	0.18	2.87	2.68	2.84	1.69
Ny-Ålesund	262.57	5.17	-	29.07	5.75	3.75	9.08	7.93	6.37	-	18.39	17.69	52.44

Tabell A.1.10: Månedlige og årlige nedbørmengder på norske bakgrunnsstasjoner, 1997.
Enhet: mm, NILU-måler.
Til høyre: Årets nedbørmålinger (DNMI) i\% av nedbørnormalene (1961-90), målt ved n®ermeste meteorologiske stasjon.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR	\% av normalen
Birkenes	19	241	76	26	61	101	46	90	114	133	182	155	1244	82^{*}
Sogne	36	201	80	37	84	91	18	100	155	131	111	170	1215	89*
Lista	66	180	62	44	44	35	94	181	105	174	95	140	1219	107
Skreâdalen	84	433	310	80	89	58	46	131	316	213	131	180	2071	97
Valle	28	204	77	21	47	73	77	113	109	86	148	103	1085	100 *
Vatnedalen	41	183	115	9	21	37	52	119	104	107	32	37	858	110 *
Treungen	21	114	34	16	44	92	98	92	77	89	136	73	887	91 *
Solhomfjell	14	121	25											
Mosvatn	14	74	53	9	42	109	75	87	74	45	67	55	705	95^{*}
Prestebakke	11	118	13	16	101	66	39	51	114	32	36	43	640	86°
Lardal	14	94	16	4	52	105	38	48	105	89	141	107	813	78°
Løken	15	72	3	4	80	39	33	71	77	51	53	50	549	80^{*}
Hurdal	16	84	18	0	124	74	49	71	92	79	65	104	775	81*
Nordmoen	18	80	16	0	120	70	51	51	82	52	65	84	689	81^{*}
Fagernes	10	33	4	1	74	122	54	77	57	29	53	50	565	94*
Gulsvik	22	46	0	2	40	116	72	85	91	54	109	66	704	81*
Osen	12	56	16	8	158	59	36	95	76	61	54	76	708	100 *
Valdalen	12	66	20	24	110	49	34	156	74	76	40	49	710	105
Ualand	92	453	113	95	76	45	61	119	375	180	125	214	1948	102 *
Vikedal	133	547	313	133	64	39	73	173	389	300	96	211	2472	99 *
Haukeland	303	654	740	263	113	46	69	170	450	398	63	300	3569	105 *
Voss	81	308	236	51	63	21	41	102	140	154	25	55	1275	100 *
Nausta	173	429	449	196	115	39	92	125	330	305	22	153	2428	114 *
Kårvatn	109	100	295	268	76	41	56	61	370	383	50	34	$1 \overline{842}$	136 *
Selbu	165	97	214	177	61	144	48	75	269	358	44	29	1682	130 *
Heylandet	220	109	214	145	40	45	68	45	251	201	11	69	1418	113
Namsvatn	210	93	170											
Tustervatn	345	167	233	124	85	21	63	98	183	123	34	53	1528	120
IVverbygd	135	44	58	37	27	3	35	52	83	72	35	23	603	112 *
Karpdalen	22	21	23	7	6	3	20	51	51	55	26	19	304	88
Karasjok	12	15	12	9	19	2	3	42	38	17	16	28	212	82
Svanvik	19	28	11	7	10	8	16	68	41	34	22	14	278	88 *
Ny-Ålesund	44	15	3	20	5	3	45	51	33	1	41	60	320	111

* NILU og DNMI måler har ulik plassering.

Tabell A.1.11: Månedlig og årlig våtavsetning av sterk syre $\left(\mathrm{H}^{+}\right)$på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu e k v / m^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	1224	6082	2201	517	747	2672	1521	2218	3666	3278	6670	8871	39680
Sagne	2507	6807	2885	1135	1312	3128	1007	3531	6800	3894	5300	3970	42277
Lista	3751	3985	2230	833	680	1646	2049	7120	2705	4743	3645	3941	37241
Skreådalen	1771	4535	2073	432	2124	783	831	2066	2565	3270	2512	2112	25047
Valle	378	2275	1361	261	1168	1410	1688	2712	1739	1731	4079	2888	21689
Vatnedalen	625	803	725	39	841	258	155	2722	828	1233	998	320	9547
Treungen	750	2546	1069	48	1204	1920	1759	2436	1915	2934	5183	2481	24244
Solhomfjell	401	2698	649										
Mesvatn	297	706	657	138	1492	1349	1330	1120	831	817	1998	1104	11836
Prestebakke	543	2591	752	200	2129	1328	313	1385	3087	441	1326	1589	15534
Lardal	642	3060	782	83	821	1539	595	2009	2426	1871	6635	3774	24350
Løken	709	1704	26	4	786	654	343	2195	2326	942	1392	1818	12900
Hurdal	521	2125	564	0	1212	1134	632	2578	2455	1326	2972	2821	18297
Nordmoen	625	2057	497	0	1371	1112	696	1687	2055	355	2751	2094	15299
Fagernes	59	515	108	5	720	1462	596	1018	743	185	985	842	7232
Gulsvik	102	987	0	89	405	1873	1292	1669	997	1375	2789	1138	12723
Osen	234	1165	247	105	1773	801	442	1203	840	486	1457	1919	10586
Valdalen	149	1051	450	310	1984	297	270	1908	679	478	766	868	9197
Ualand	4200	10190	2340	1745	1757	1808	1902	5974	6284	5203	4034	5917	51355
Vikedal	3613	7168	6361	2097	2020	240	2523	4810	4650	3166	$28 \overline{3} \overline{3}$	3633	43740
Haukeland	4859	3582	5649	1941	3311	1800	650	938	4402	4060	1225	3404	35653
Voss	1393	2698	2518	559	1654	617	870	1884	1530	2013	728	818	17283
Nausta	3105	2605	4448	1566	1991	751	1199	1642	1953	2749	518	1397	23924
Kårvatn	527	347	2409	2012	314	262	552	1058	1467	1487	357	264	11067
Selbu	1205	589	1357	1251	297	496	189	113	582	2301	373	500	9259
Høylandet	1821	394	1536	413	116	90	680	434	1859	356	68	187	7955
Namsvatn	1383	431	1161										
Tustervatn	1578	576	909	488	189	116	523	469	1109	426	371	222	6922
Overbygd	952	321	492	364	133	11	556	783	398	202	117	115	4445
Karpdalen	288	234	797	181	1280	345	186	1911	1558	1088	411	161	8278
Karasjok	86	176	117	83	272	147	90	372	299	148	151	85	1994
Svanvik	158	308	194	194	469	117	289	1579	670	386	98	32	4490
Ny-Ålesund	174	284	10	43	70	6	19	22	25	0	14	132	805

Tabell A.1.12: Månedlig og årlig våtavsetning av sulfat på norske bakgrunnsstasjoner, 1997.
Enhet: $m g$ S/m², korrigert for sjøsalt.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	19	101	35	6	12	61	25	56	51	61	107	114	648
Søgne	44	110	73	22	32	96	20	76	83	74	73	106	809
Lista	64	66	25	22	17	47	58	168	46	62	45	53	666
Skreådalen	30	80	58	23	39	35	26	74	19	49	32	42	508
Valle	8	21	20	4	19	54	20	54	20	25	41	37	323
Vatnedalen	8	28	17	4	17	15	22	52	17	12	9	3	204
Treungen	11	27	19	1	18	50	26	50	33	28	68	33	364
Solhomfjell	8	46	25										
Mosvatn	2	4	5	0	22	57	19	3	8	8	15	6	150
Prestebakke	11	92	20	13	50	29	14	38	46	16	16	27	373
Lardal	9	39	16	4	15	35	10	30	38	19	78	42	338
Løken	10	25	2	2	18	15	10	52	30	13	26	24	229
Hurdal	7	23	10	0	17	28	15	37	33	21	29	35	254
Nordmoen	8	21	9	0	21	26	18	30	27	5	29	28	221
Fagernes	0	3	1	0	11	42	10	21	10	3	9	5	116
Gulsvik	3	14	0	4	23	56	17	39	16	17	39	19	247
Osen	2	9	4	2	23	16	10	48	2	11	18	15	158
Valdalen	2	6	6	5	46	16	8	61	13	7	9	8	185
Ualand	50	173	77	64	30	50	31	115	89	60	40	74	855
Vikedal	56	116	124	57	36	26	36	101	180	53	36	50	870
Haukeland	63	88	138	52	68	40	24	112	69	62	17	43	769
Voss	14	23	27	8	30	19	13	33	19	21	6	6	220
Nausta	30	31	60	35	32	19	28	51	29	31	5	11	361
Kårvatn	8	5	38	44	7	15	15	21	4	10	5	1	171
Selbu	11	3	22	32	10	31	14	1	18	28	8	4	183
Hoylandet	26	8	40	22	7	12	17	0	36	14	1	6	196
Namsvatn	13	6	22										
Tustervatn	15	6	20	21	6	4	9	10	13	9	5	4	121
Overbygd	8	3	5	8	4	3	10	3	5	4	2	3	59
Karpdalen	6	6	16	7	23	21	7	36	31	25	7	5	170
Karasjok	1	1	2	2	7	0	2	4	5	4	3	1	32
Svanvik	3	8	5	7	14	9	8	44	16	9	6	4	134
Ny -Ålesund	6	7	0	15	7	1	39	33	2	0	17	2	109

Tabell A.1.13: Månedlig og årlig våtavsetning av nitrat på norske bakgrunnsstasjoner, 1997.
Enhet: mg N/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	18	103	30	5	18	24	22	50	52	59	114	122	618
Søgne	45	122	65	17	26	33	17	48	87	67	83	123	733
Lista	68	82	54	15	20	34	64	91	44	56	67	75	666
Skreâdalen	30	65	47	12	52	23	23	45	49	42	44	41	472
Valle	10	29	21	3	21	17	10	32	20	17	58	43	280
Vatnedalen	9	16	9	1	19	6	10	29	2	10	14	6	130
Treungen	14	32	15	1	22	26	18	30	26	26	86	33	330
Solhomfjell	9	38	19										
Mosvatn	4	9	9	1	24	20	13	18	13	9	23	13	155
Prestebakke	12	81	18	7	42	11	3	15	33	15	23	28	288
Lardal	9	35	10	2	16	13	9	21	30	17	109	46	317
Løken	12	30	3	1	19	12	7	37	23	12	32	32	220
Hurdal	8	28	7	0	23	11	7	26	26	19	44	41	240
Nordmoen	11	27	7	0	27	13	10	21	23	5	46	38	229
Fagernes	2	8	2	0	13	10	2	10	4	0	16	16	83
Gulsvik	8	20	0	3	21	16	10	27	17	17	54	32	225
Osen	4	14	4	2	23	7	4	24	6	10	20	25	139
Valdalen	3	17	6	3	35	7	6	27	9	11	13	15	152
Ualand	48	81	65	52	33	29	27	61	71	58	54	69	648
Vikedal	47	76	53	37	37	15	26	60	35	31	44	43	504
Haukeland	59	60	91	30	56	21	13	63	48	50	19	43	550
Voss	12	23	25	6	26	8	9	19	17	17	9	9	181
Nausta	31	29	47	18	31	7	17	27	30	33	7	19	294
Kårvatn	8	4	15	10	7	7	9	16	17	9	4	5	109
Selbu	7	5	11	10	8	9	5	4	2	32	5	7	105
Hoylandet	33	12	17	11	5	6	7	5	18	17	2	13	145
Namsvatn	17	7	11										
Tustervatn	20	9	11	7	4	3	7	8	14	8	3	5	98
Overbygd	7	3	3	2	4	1	3	6	0	3	1	3	37
Karpdalen	3	3	3	2	4	3	4	7	2	6	3	4	39
Karasjok	2	2	2	1	3	0	0	3	3	3	3	2	23
Svanvik	3	4	1	1	2	2	4	8	4	5	3	3	39
Ny-Alesund	1	0	0	3	3	0	9	9	2	0	7	3	32

Tabell A.1.14: Månedlig og årlig våtavsetning av ammonium på norske bakgrunnsstasjoner, 1997.
Enhet: mg N/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	17	92	26	3	13	29	19	65	41	62	107	85	559
Sagne	45	100	70	13	54	45	20	71	58	63	65	157	760
Lista	62	116	53	15	17	25	80	123	27	42	59	64	682
Skreádalen	31	128	81	32	39	23	32	75	55	36	32	43	609
Valle	9	19	13	2	22	15	9	39	22	11	34	24	220
Vatnedalen	9	28	8	4	17	10	13	16	3	1	5	6	121
Treungen	9	21	15	1	16	30	16	41	29	12	69	23	282
Soihomfjell	9	40	23										
Mesvatn	1	5	5	0	31	20	13	28	9	4	10	2	129
Prestebakke	12	52	21	5	74	5	17	20	28	15	13	16	276
Lardal	6	20	12	2	20	14	9	20	28	3	76	27	237
Løken	10	30	1	1	19	15	11	51	20	8	30	26	223
Hurdal	5	20	7	0	43	11	12	21	22	13	24	26	202
Nordmoen	9	12	6	0	18	13	17	19	18	4	28	19	163
Fagernes	3	7	1	0	24	16	4	12	5	1	10	9	92
Gulsvik	9	12	0	1	28	29	16	41	16	13	36	29	232
Osen	2	10	2	1	16	8	8	38	12	6	11	11	126
Valdalen	2	7	3	2	31	9	12	57	13	7	6	7	154
Ualand	31	94	69	65	52	23	27	80	77	40	29	34	622
Vikedal	53	127	99	43	40	24	20	81	74	57	23	30	684
Haukeland	48	154	146	45	52	27	37	178	63	50	18	44	844
Voss	10	12	20	6	41	8	7	20	12	9	5	2	152
Nausta	21	23	46	24	55	8	21	41	38	24	3	10	316
Kårvatn	15	18	32	19	8	15	17	19	36	21	5	5	208
Selbu	17	5	10	13	30	6	5	42	11	26	4	2	172
Høylandet	57	31	48	32	20	5	10	7	31	41	3	23	308
Namsvatn	29	12	22										
Tustervatn	56	32	38	26	13	5	19	16	29	22	4	14	271
Øverbygd	16	3	3	4	11	3	2	14	6	1	3	3	69
Karpdalen	3	5	4	2	7	4	5	6	3	5	1	4	44
Karasjok	0	2	2	1	2	0	1	5	5	3	2	4	27
Svanvik	5	5	3	4	8	3	6	23	8	7	5	5	82
Ny-Alesund	10	3	0	3	3	0	33	89	4	0	8	2	139

Tabell A.1.15: Månedlig og årlig våtavsetning av kalsium på norske bakgrunnsstasjoner, 1997.
Enhet: $\mathrm{mg} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	2	24	14	1	3	13	6	11	9	14	16	9	122
Søgne	13	60	36	7	3	18	6	14	25	16	21	27	245
Lista	39	409	207	22	14	22	37	38	176	93	39	44	1142
Skreadalen	10	117	116	26	11	20	11	18	37	29	7	24	428
Valle	3	33	13	2	4	22	7	12	2	3	13	11	126
Vatnedalen	5	62	29	6	8	11	29	26	3	4	5	1	189
Treungen	4	16	6	3	3	14	21	13	5	2	11	3	102
Solhomfjell	3	14	8										
Møsvaln	1	6	3	0	2	23	6	11	3	1	1	1	59
Prestebakke	5	118	5	12	4	4	8	11	16	18	6	6	199
Lardal	4	9	5	3	3	3	6	9	6	1	15	3	66
Løken	2	10	2	4	5	7	7	15	11	5	16	4	90
Hurdal	3	7	2	0	2	4	8	13	4	3	2	5	52
Nordmoen	3	6	3	0	21	4	9	13	8	3	4	12	86
Fagernes	2	3	1	0	2	16	6	6	3	2	7	3	50
Gulsvik	4	5	0	3	6	22	9	5	5	7	15	5	86
Osen	1	5	3	2	3	12	5	17	1	8	9	2	68
Valdalen	1	4	2	4	22	9	7	27	2	9	4	3	94
Ualand	8	91	75	34	3	18	8	22	71	18	4	16	366
Vikedal	11	138	118	51	4	12	11	17	158	35	34	11	599
Haukeland	46	193	107	59	8	7	11	24	52	46	3	9	565
Voss	5	38	18	2	5	6	6	5	7	5	1	1	99
Nausta	24	88	45	28	4	2	11	6	28	32	2	5	274
Kårvatn	29	25	38	46	3	9	7	5	17	29	5	2	217
Selbu	33	14	36	40	4	22	21	27	35	27	9	4	271
Høylandet	42	27	34	29	4	18	11	6	21	31	2	11	235
Namsvatn	21	10	21										
Tustervatn	70	31	59	24	4	7	11	8	19	16	2	5	258
Overbygd	17	4	15	4	3	2	5	4	8	22	7	9	99
Karpdalen	6	4	6	2	2	2	6	6	4	8	7	4	55
Karasjok	4	2	3	3	1	0	0	2	2	1	2	2	21
Svanvik	2	4	4	2	3	4	4	10	3	6	9	5	54
Ny-Ålesund	35	3	0	31	4	1	169	38	149	0	37	41	468

Tabell A.1.16: Månedlig og årlig våtavsetning av kalium på norske bakgrunnsstasjoner, 1997.
Enhet: mg/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	2	23	12	1	5	12	8	6	7	6	18	15	115
Sagne	13	55	34	4	8	13	2	7	36	20	17	42	250
Lista	35	354	183	16	11	11	28	25	150	88	39	41	985
Skreádalen	19	115	114	37	16	14	16	26	64	45	14	40	522
Valle	3	23	9	2	3	7	3	11	6	4	3	10	83
Vatnedalen	3	23	12	3	4	8	12	11	10	10	2	1	99
Treungen	1	5	2	0	2	6	2	3	8	1	6	1	38
Solhomfjell	4	15	7										
Masvatn	1	4	3	0	5	5	4	6	3	0	1	1	32
Prestebakke	5	22	3	3	6	6	18	14	16	8	2	11	112
Lárdal	1	6	1	0	2	3	2	2	3	0	8	3	33
Løken	2	7	1	1	7	10	4	9	7	3	11	5	67
Hurdal	1	3	1	0	2	4	1	5	3	3	2	7	32
Nordmoen	1	3	1	0	4	6	3	5	3	2	4	11	43
Fagernes	1	1	0	0	2	7	2	3	1	1	1	1	20
Gulsvik	3	3	0	2	11	12	4	5	6	1	12	18	77
Osen	1	2	0	1	9	3	4	8	2	14	3	7	53
Valdalen	1	2	1	2	6	11	7	14	5	6	3	3	60
Ualand	4	74	45	21	4	4	2	8	53	17	3	12	247
Vikedal	11	82	92	19	5	19	5	12	24	27	4	7	316
Haukeland	30	168	69	40	14	8	12	23	53	29	4	13	463
Voss	4	26	14	2	7	6	4	4	4	3	1	1	75
Nausta	17	79	31	17	5	8	8	7	22	11	1	2	206
Kảrvaln	35	25	34	51	13	12	4	6	13	27	4	4	225
Selbu	27	8	11	21	4	4	2	49	12	19	2	1	161
Heylandet	41	28	35	13	7	5	10	4	23	22	1	6	197
Namsvatn	14	8	14										
Tustervatn	70	25	55	14	8	5	18	14	21	15	3	6	254
Overbygd	16	3	18	3	3	3	5	5	5	8	3	6	78
Karpdalen	5	4	6	2	1	2	2	3	3	9	5	5	45
Karasjok	1	1	3	1	5	0	1	5	8	4	4	4	36
Svanvik	1	1	1	1	1	1	3	6	2	3	3	3	25
Ny-Ålesund	20	2	0	12	1	1	26	37	5	0	31	24	168

Tabell A.1.17: Månedlig og årlig våtavsetning av magnesium på norske bakgrunnsstasjoner, 1997.
Enhet: $m g / m^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	1	56	30	1	3	4	2	5	10	8	25	16	160
Søgne	11	148	89	6	3	5	3	6	48	28	29	35	412
Lista	95	1260	585	56	28	25	41	38	488	249	100	114	3092
Skreådalen	9	262	250	26	7	6	2	4	63	34	7	10	682
Valle	3	58	25	2	2	2	2	3	4	2	6	6	116
Vatnedalen	2	41	20	2	3	1	6	4	4	3	1	0	89
Treungen	2	18	7	2	2	3	1	2	1	2	10	1	51
Solhomfjell	3	21	8										
Møsvatn	1	8	3	0	2	2	0	1	1	0	1	$\overline{0}$	21
Prestebakke	3	47	4	6	2	2	2	3	24	6	2	7	109
Lardal	2	15	5	1	1	1	1	3	4	0	11	2	46
Løken	1	10	2	1	1	2	1	4	7	2	3	2	35
Hurdal	1	5	1	0	1	1	1	2	2	1	2	3	19
Nordmoen	1	5	2	0	11	1	1	3	1	1	2	2	30
Fagernes	2	2	0	0	1	2	1	1	0	0	1	0	11
Gulsvik	2	3	0	1	2	5	1	2	5	1	4	2	28
Osen	0	2	1	0	1	2	0	2	1	3	1	1	15
Valdalen	1	4	2	4	5	1	1	3	1	2	1	1	24
Ualand	9	252	145	69	4	2	2	6	120	45	11	37	703
Vikedal	21	303	293	61	5	3	4	4	154	85	10	19	962
Haukeland	83	525	228	99	9	1	4	9	139	73	5	14	1196
Voss	12	99	41	4	2	1	1	1	12	7	1	1	182
Nausta	51	263	95	53	2	1	2	4	54	31	2	4	563
Kärvatn	68	54	70	112	4	2	2	1	30	70	4	2	421
Selbu	87	23	35	62	4	4	11	7	39	50	3	3	329
Hrylandet	121	77	101	39	12	1	2	6	51	37	2	8	457
Namsvatn	58	27	54										
Tustervatn	155	62	133	27	4	1	2	5	31	22	2	4	454
Øverbygd	49	7	56	8	1	1	1	3	10	15	6	12	168
Karpdalen	13	9	14	3	2	2	2	4	4	19	14	7	92
Karasjok	1	2	3	2	1	0	0	1	1	1	1	1	12
Svanvik	5	5	5	2	1	1	1	3	1	6	4	3	38
Ny-Ȧlesund	522	5	0	37	3	1	66	33	23	0	71	72	954

Tabell A.1.18: Månedlig og årlig våtavsetning av natrium på norske bakgrunnsstasjoner, 1997. Enhet: mg/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	12	454	251	8	29	31	20	41	85	65	208	142	1347
Søgne	75	1263	747	45	56	40	15	43	377	205	250	307	3418
Lista	824	9978	4352	448	266	202	311	324	4077	2192	867	992	24952
Skreådalen	87	2038	2388	247	76	23	26	42	526	325	66	109	5972
Valle	19	440	181	16	23	9	6	16	38	17	43	46	854
Vatnedalen	23	391	222	28	34	5	74	65	58	14	8	3	922
Treungen	11	90	41	1	16	8	6	13	18	14	85	13	314
Solhomfjell	10	182	59										
Mosvatn	2	50	22	1	25	8	4	3	8	2	11	2	139
Prestebakke	20	322	28	46	39	9	9	10	197	40	17	44	780
Lardal	4	112	17	1	7	4	5	7	33	7	90	18	306
Løken	8	80	8	5	14	7	8	32	51	18	22	24	276
Hurdal	4	26	8	0	5	6	2	10	12	12	17	22	123
Nordmoen	3	30	10	0	8	6	3	10	12	8	17	24	131
Fagernes	1	5	1	1	5	5	3	3	4	3	10	2	41
Gulsvik	3	18	0	3	15	11	3	5	26	6	21	16	128
Osen	2	13	2	2	13	3	2	4	3	9	7	8	69
Valdalen	11	16	10	27	24	9	6	10	8	17	8	6	151
Ualand	69	2064	1216	554	37	12	15	39	991	365	89	317	5770
Vikedal	186	2408	2553	465	53	15	23	27	1089	689	75	152	7736
Haukeland	582	4048	1602	741	81	8	25	57	1073	592	40	115	9001
Voss	104	740	317	35	23	2	6	10	98	55	6	9	1405
Nausta	452	2220	755	446	33	3	12	34	446	251	12	24	4691
Kárvatn	578	400	466	896	61	10	14	10	230	581	32	17	3309
Selbu	717	180	248	529	92	14	12	27	231	374	21	27	2472
Hoylandet	972	636	795	286	159	6	11	42	413	302	14	64	3700
Namsvatn	405	217	389										
Tustervatn	1185	435	1036	198	76	4	15	43	245	178	17	30	3511
Øverbygd	389	45	499	59	12	8	5	21	69	109	51	107	1372
Karpdalen	107	78	114	27	15	13	10	25	29	155	116	64	744
Karasjok	4	8	21	7	9	0	1	9	8	14	8	7	89
Svanvik	35	27	37	10	10	8	3	14	5	51	34	23	254
Ny-Alesund	4365	38	0	305	16	5	243	206	120	0	422	588	6972

Tabell A.1.19: Månedlig og årlig våtavsetning av klorid på norske bakgrunnsstasjoner, 1997.
Enhet: mg/m².

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	22	942	498	14	49	56	31	62	152	119	362	253	2563
Søgne	142	2295	1473	89	102	71	23	81	706	416	428	532	6350
Lista	1708	21009	10133	835	487	356	483	496	7866	3993	1473	1740	50837
Skreådalen	181	3954	4414	472	132	34	37	68	1029	599	108	176	11243
Valle	37	826	369	29	37	14	9	27	69	32	81	86	1616
Vatnedalen	39	724	391	42	48	6	77	75	65	24	17	6	1511
Treungen	24	189	80	2	23	14	11	24	33	27	156	32	615
Solhomfjell	17	365	111										
Møsvatn	4	91	41	2	38	12	7	5	15	6	22	7	251
Prestebakke	43	725	53	89	68	14	15	17	363	76	27	69	1558
Lardal	8	215	31	2	8	7	9	12	59	16	153	39	559
Løken	15	148	12	10	25	11	11	45	98	32	38	42	489
Hurdal	7	51	15	0	11	10	4	18	18	21	30	38	222
Nordmoen	7	54	18	0	15	10	5	13	21	13	30	43	228
Fagernes	1	12	2	1	11	7	5	7	6	6	11	5	74
Gulsvik	6	47	0	3	24	17	4	8	11	13	41	34	208
Osen	3	25	5	3	28	6	4	10	6	17	12	18	136
Valdalen	21	24	17	47	35	15	9	14	13	31	14	11	248
Ualand	128	4784	2547	1056	57	14	23	70	2014	718	148	564	12123
Vikedal	384	5242	5245	875	85	23	41	51	2000	1324	134	272	15675
Haukeland	1173	7977	3107	1435	150	14	42	93	2102	1113	70	204	17551
Voss	206	1505	624	66	40	4	7	20	173	115	12	15	2787
Nausta	1010	4474	1468	830	64	5	22	70	841	486	21	43	9336
Kårvatn	1200	777	974	1744	120	17	22	15	429	1078	55	30	6486
Selbu	1627	353	486	1060	184	26	24	76	431	716	37	47	5068
Haylandet	1909	1341	1576	535	305	12	22	80	840	570	25	117	7333
Namsvatn	805	396	811										
Tustervatn	2407	812	2121	378	153	8	25	81	501	346	29	54	7018
Øverbygd	827	81	1041	119	22	12	6	37	122	214	89	196	2764
Karpdalen	235	178	231	42	23	16	15	41	50	295	199	111	1426
Karasjok	8	16	45	12	14	0	1	12	12	24	13	11	157
Svanvik	69	52	81	18	17	10	4	23	7	98	59	41	470
Ny-Alesund	11515	79	0	576	31	10	408	404	210	0	748	1061	16770

Tabell A.1.20: De 10 største døgnlige våtavsetninger av sulfat på de norske bakgrunnsstasjoner, 1997.

Stasjon	Dato	SO_{4}-nedfall $\mathrm{mg} \mathrm{S} / \mathrm{m}^{2}$	Nedbørmengde mm	\% av årsnedfall SO_{4}	pH
Birkenes	23/12/97	43	24	6,6	3.80
	07/10/97	43	56	6,6	4.43
	17/02/97	41	64	6,3	4.57
	08/12/97	27	29	4,2	4.28
	21/06/97	25	58	3,9	4.68
	25/08/97	17	35	2,6	5.29
	29/08/97	13	15	2,0	5.15
	10/11/97	13	28	2,0	4.75
	26/03/97	12	29	1,9	4.60
	01/09/97	12	12	1,9	4.78
				38,0	
Lista	28/08/97	26	30	3,9	4.41
	07/10/97	26	47	3,9	4.45
	17/02/97	23	64	3,5	5.57
	20/06/97	22	14	3,3	4.18
	21/08/97	18	23	2,7	4.45
	17/10/97	18	39	2,7	4.44
	12/01/97	18	18	2,7	4.45
	11/01/97	15	13	2,3	3.98
	24/07/97	14	35	2,1	4.83
	23/04/97	14	26	2,1	4.69
				29.1	
Skreådalen	28/08/97	39	30	7,7	4.41
	25/08/97	18	44	3,5	5.08
	06/02/97	17	21	3,3	4.35
	08/12/97	16	54	3,1	4.73
	07/10/97	16	38	3,1	4.60
	17/10/97	15	33	3,0	4.52
	01/03/97	15	76	3,0	5.04
	24/02/97	14	29	2,8	4.76
	12/05/97	13	16	2,6	4.42
	11/09/97	12	20	2,4	4.87
				34,4	
Løken	27/08/97	11	8	4,8	4.09
	25/08/97	10	15	4,4	4.51
	02/09/97	10	16	4,4	4.71
	23/08/97	10	18	4,4	4.49
	12/08/97	8	14	3,5	4.63
	12/11/97	8	7	3,5	5.26
	08/12/97	7	6	3,1	4.13
	07/10/97	7	20	3,1	4.62
	11/09/97	6	11	2,6	4.18
	11/05/97	6	19	2,6	4.81
				36,2	
Osen	30/08/97	19	41	12,0	5.19
	25/08/97	7	17	4,4	4.87
	07/05/97	6	45	3,8	4.98
	22/08/97	6	13	3,8	4.59
	14/05/97	6	10	3,8	4.56
	23/08/97	5	10	3,2	4.85
	13/06/97	5	8	3,2	4.63
	29/08/97	4	6	2,5	5.24
	20/11/97	4	5	2,5	4.22
	01/07/97	4	12	2,5	4.94
				41,8	

Tabell A.1.20, forts.

Stasjon	Dato	SO_{4}-nedfall $\mathrm{mg} \mathrm{S} / \mathrm{m}^{2}$	Nedbørmengde mm	\% av årsnedfall SO_{4}	pH
Haukeland	21/08/97	68	38	8,84	4.84
	12/03/97	25	26	3,25	4.48
	12/05/97	21	14	2,73	4.03
	09/08/97	20	31	2,60	6.64
	13/05/97	15	15	1,95	4.24
	08/04/97	15	15	1,95	4.25
	25/03/97	15	15	1,95	4.56
	30/03/97	15	120	1,95	5.13
	31/03/97	14	116	1,82	5.26
	01/03/97	13	158	1,69	5.31
				28,74	
Kårvatn	12/08/97	18	6	10,5	3.95
	28/03/97	10	21	5,8	4.61
	04/04/97	7	14	4,1	4.76
	14/06/97	7	11	4,1	5.51
	12/03/97	7	8	4,1	4.53
	27/03/97		30	3,5	4.98
	15/03/97	5	23	2,9	4.96
	23/06/97	5	10	2,9	4.84
	03/04/97	5	11	2,9	4.84
	14/04/97	4	18	2,3	5.15
				43,3	
Tustervatn	16/04/97	7	10	5,8	5.00
	24/09/97	6	17	5,0	5.38
	17/01/97	4	7	3,3	4.34
	31/08/97	3	17	2,5	5.25
	02/05/97	3	55	2,5	5.66
	22/08/97	3	20	2,5	5.07
	01/04/97	3	17	2,5	5.44
	10/03/97		11	2,5	4.92
	12/03/97		20	2,5	5.23
	15/04/97	2	5	1,7	5.01
				30,6	
Karasjok	21/08/97	2	13	6,25	4.95
	07/09/97	2	45	6,25	5.14
	09/12/97	2	9	6,25	5.52
	11/09/97		8	3,13	5.06
	21/09/97		7	3,13	5.45
	20/08/97	1	6	3,13	4.95
	02/08/97		5	3,13	4.97
	17/11/97	1	5	3,13	4.98
	01/04/97	1	5	3,13	5.25
	15/12/97	1	1	3,13	5.44
				40,63	

Tabell A.1.21: Veide årsmiddelkonsentrasjoner og våtavsetninger av komponenter i nedbøren på norske bakgrunnsstasjoner i årene 1973-1997. og beregnede tørravsetninger av svovel- og nitrogenkomponenter i årene 1987-1997 (tabell 3.6).

Stasjon	År	Arlige middelkonsentrasjoner						$\begin{array}{\|c\|} \hline \text { Ársnedbør } \\ \hline \mathrm{mm} \\ \hline \end{array}$		Ȧrlig váta	avsetnin		Terravsetning	
		$\begin{array}{\|c\|} \hline \mathrm{SO4-S} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{array}$	NO3-N mg / l	NH4-N mg / l	$\begin{gathered} \hline \mathrm{Ca} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	Mg	pH		$\begin{array}{\|l} \hline \mathrm{SO} 4-\mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \\ \hline \end{array}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{gathered} \mathrm{H}+ \\ \mathrm{mekv} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \\ \hline \end{gathered}$
Birkenes	1973	1.06				0.11	4.27	1072	1136			58		
	1974	1.11	0.50	0.52	0.23	0.19	4.25	1563	1735	782	813	88		
	1975	1.01	0.49	0.45	0.19	0.17	4.27	1341	1354	657	603	72		
	1976	1.18	0.63	0.50	0.17	0.12	4.21	1434	1692	903	717	88		
	1977	1.04	0.54	0.54	0.17	0.17	4.27	1597	1661	862	862	86		
	1978	1.17	0.62	0.57	0.17	0.12	4.11	1242	1453	770	708	96		
	1979	. 1.25	0.57	0.65	0.22	0.15	4.09	1560	1950	889	1014	127		
	1980	1.23	0.57	0.63	0.22	0.11	4.16	1160	1427	661	731	80		
	1981	1.04	0.52	0.53	0.20	0.13	4.21	1316	1369	684	697	81		
	1982	1.05	0.56	0.72	0.22	0.21	4.27	1592	1663	887	1140	86		
	1983	0.91	0.49	0.50	- 0.24	0.17	4.33	1313	1195	646	650	62		
	1984	1.09	0.57	0.63	0.21	0.19	4.24	1603	1755	905	1003	93		
	1985	0.98	0.58	0.57	0.16	0.09	4.24	1409	1375	810	805	80		
	1986	1.01	0.60	0.69	0.19	0.15	4.26	1613	1622	966	1108	88		
	1987	0.74	0.43	0.46	0.13	0.13	4.38	1576	1168	671	719	65	159	248
	1988	0.83	0.58	0.61	0.15	0.13	4.25	1986	1649	1159	1211	113	159	257
	1989	0.90	0.76	0.63	0.19	0.19	4.27	1228	1106	934	776	67	136	238
	1990	0.71	0.47	0.46	0.14	0.21	4.37	1861	1325	869	852	79	167	254
	1991	0.75	0.57	0.50	0.14	0.19	4.33	1247	930	710	618	59	170	232
	1992	0.74	0.52	0.44	0.12	0.13	4.37	1344	991	703	589	57	138	188
	1993	0.77	0.55	0.51	0.15	0.23	4.37	1245	960	683	634	54	96	158
	1994	0.63	0.55	0.51	0.15	0.12	4.48	1397	886	768	707	46	128	212
	1995	0.53	0.48	0.42	0.09	0.14	4.47	1411	743	684	589	47	115	213
	1996	0.60	0.53	0.47	0.12	0.15	4.42	1192	714	630	563	45	123	205
	1997	0.52	0.50	0.45	0.10	0.13	4.50	1244	648	618	559	40	100	207
Søgne	1989	1.12	0.93	0.91	0.31	0.43	4.34	1151	1289	1067	1050	53	212	
	1990	0.79	0.60	0.48	0.25	0.52	4.33	1807	1425	1084	872	85	237	612
	1991	0.94	0.66	0.58	0.23	0.47	4.30	1133	1063	750	662	57	245	559
	1992	0.79	0.59	0.49	0.19	0.34	4.33	1280	1011	752	623	60	192	365
	1993	0.95	0.71	0.63	0.26	0.26	4.33	1112	1061	786	699	52	148	326
	1994	0.76	0.62	0.54	0.19	0.31	4.39	1441	1092	894	781	58	173	349
	1995	0.61	0.54	0.45	0.19	0.34	4.45	1213	735	651	552	43	151	350
	1996	0.87	0.75	0.69	0.31	0.36	4.32	1044	910	786	725	50	175	305
	1997	0.67	0.60	0.63	0.20	0.34	4.46	1215	809	733	760	42	123	304
Lista	1973	1.01				1.31	4.33	851	860			40		
	1974	1.06				1.00	4.28	1208	1280			63		
	1975	1.10				1.06	4.30	1109	1220			56		
	1976	1.37				1.21	4.23	922	1263			54		
	1977	0.95				1.09	4.34	1114	1058			51		
	1978	1.01	0.50	0.45	0.51	1.07	4.27	931	940	466	419	50		
	1979	1.27	0.63	0.57	0.53	1.04	4.09	1157	1469	729	659	94		
	1980	1.05	0.59	0.54	0.47	1.00	4.22	953	1001	562	515	57		
	1981	0.90	0.47	0.50	0.60	1.36	4.34	1037	933	487	519	47		
	1982	1.09	0.65	0.60	0.85	1.82	4.29	1070	1161	699	645	55		
	1983	0.88	0.49	0.40	0.77	1.69	4.36	1198	1051	584	480	53		
	1984	0.92	0.61	0.47	0.86	2.12	4.28	1002	923	613	474	53		
	1985	1.11	0.80	0.68	0.76	1.74	4.20	996	1110	793	681	63		
	1986	0.95	0.63	0.57	1.06	2.66	4.30	- 1293	1230	816	739	65		
	1987	0.86	0.55	0.55	0.65	1.48	4.35	1169	1004	647	638	52		
	1988	0.75	0.67	0.57	0.82	2.02	4.28	1585	1189	1054	895	84		
	1989	0.83	0.86	0.52	1.21	3.23	4.30	1053	877	904	552	53		
	1990	0.74	0.55	0.42	1.07	3.01	4.38	1565	1156	856	653	65		
	1991	0.75	0.83	0.60	1.36	3.76	4.32	1031	771	858	615	49		
	1992	0.72	0.60	0.41	1.02	2.54	4.38	1376	985	826	561	57		
	1993	0.81	0.80	0.68	2.10	1.79	4.39	845	686	673	579	34		
	1994	0.56	0.57	0.52	0.91	2.37	4.56	1180	659	678	615	33		
	1995	0.67	0.73	0.62	1.15	3.05	4.48	896	599	658	555	30		
	1996	0.62	0.74	0.67	0.88	2.20	4.42	910	564	673	607	35		
	1997	0.55	0.55	0.56	0.94	2.54	4.52	1219	666	666	682	37		
Şkreádalen	1973	0.50				0.19	4.60	2185	1093			55		
	1974	0.55				0.18	4.47	2460	1350			83		
	1975	0.57	0.18	0.17		0.19	4.55	2436	1389	438	414	69		
	1976	0.60	0.24	0.23		0.17	4.55	1687	1012	405	388	48		
	1977	0.57	0.27	0.28	0.15	0.13	4.55	2057	1174	550	569	57		
	1978	0.49	0.20	0.26	0.20	0.29	4.52	1769	867	354	460	53		
	1979	0.61	0.26	0.28	0.16	0.14	4.33	2311	1410	601	647	108		
	1980	0.48	0.21	0.21	0.15	0.17	4.54	1949	936	409	409	56		
	1981	0.49	0.20	0.28	0.16	0.18	4.58	2260	1107	452	633	59		
	1982	0.57	0.28	0.37	0.17	0.22	4.52	2519	1436	709	933	76		
	1983	0.43	0.19	0.26	0.18	0.23	4.70	2843	1221	551	734	57		
	1984	0.46	0.24	0.23	0.16	0.21	4.59	1762	802	415	401	46		

Tabell A.1.21 forts.

Stasjon	Ar	Arlige middelkonsentrasjoner						Ársnedbør		Árlig våt	avsetnin		Torrav	setning
		$\begin{gathered} \hline \mathrm{SO} 4-\mathrm{S} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	$\begin{gathered} \text { NO3-N } \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	$\mathrm{NH} 4-\mathrm{N}$ mg / l	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} / \mathrm{I} \end{gathered}$	pH	mm	SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{gathered} \mathrm{H}+ \\ \mathrm{mekv} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$
Skreádalen forts.	1985	0.59	0.32	0.33	0.15	0.12	4.48	1895	1117	610	616	63		
	1986	0.53	0.29	0.30	0.15	0.19	4.51	2439	1289	698	734	75		
	1987	0.47	0.28	0.29	0.14	0.16	4.54	1639	767	451	471	48	152	
	1988	0.41	0.28	0.28	0.12	0.14	4.55	2255	926	622	632	64	153	
	1989	0.43	0.28	0.28	0.15	0.20	4.56	2519	1087	704	696	70	143	355
	1990	0.39	0.23	0.22	0.13	0.26	4.61	3346	1293	775	732	82	170	415
	1991	0.41	0.27	0.25	0.15	0.24	4.61	2172	894	583	547	53	125	279
	1992	0.37	0.24	0.23	0.12	0.16	4.70	2728	1017	647	627	55	118	254
	1993	0.29	0.22	0.25	0.30	0.56	4.81	2006	586	437	493	31	82	256
	1994	0.38	0.28	0.31	0.31	0.25	4.77	2214	842	619	695	37	104	330
	1995	0.30	0.24	0.24	0.16	0.21	4.75	2083	624	510	500	37	96	257
	1996	0.30	0.28	0.31	0.14	0.12	4.78	1463	438	404	455	25	91	329
	1997	0.25	0.23	0.29	0.21	0.33	4.92	2071	508	472	609	25	73	280
Valle	1990	0.40	0.27	0.20	0.07	0.11	4.51	1504	607	409	306	46		
	1991	0.47	0.32	0.25	0.14	0.10	4.52	912	432	287	227	28		
	1992	0.46	0.28	0.22	0.13	0.10	4.59	1120	519	318	242	29		
	1993	0.42	0.26	0.23	0.19	0.27	4.66	1052	445	276	243	23		
	1994	0.49	0.37	0.30	0.17	0.11	4.58	1230	608	461	373	32		
	1995	0.33	0.28	0.20	0.13	0.11	4.63	926	303	256	183	22		
	1996	0.38	0.33	0.25	0.17	0.07	4.60	836	316	273	206	21		
	1997	0.30	0.26	0.20	0.12	0.11	4.70	1085	323	280	220	22		
Vatnedalen	1974	0.54				0.06	4.59	884	477			23		
	1975	0.53	0.17	0.22		0.09	4.85	994	527	169	219	14		
	1976	0.50	0.20	0.36	0.12	0.10	4.85	715	358	143	257	10		
	1977	0.44	0.21	0.25	0.13	0.06	4.71	761	335	160	190	15		
	1978	0.41	0.17	0.23	0.14	0.10	4.62	862	353	147	198	21		
	1979	0.56	0.22	0.20	0.20	0.06	4.38	948	531	209	190	40		
	1980	0.45	0.16	0.10	0.14	0.06	4.55	799	360	128	80	23		
	1981	0.49	0.19	0.18	0.14	0.09	4.49	900	441	171	162	29		
	1982	0.38	0.18	0.17	0.13	0.08	4.62	967	366	174	159	23		
	1983	0.29	0.13	0.10	0.14	0.08	4.76	1249	363	166	130	22		
	1984	0.40	0.18	0.13	0.16	0.08	4.59	762	306	138	102	20		
	1985	0.43	0.22	0.18	0.15	0.04	4.57	794	343	173	145	21		
	1986	0.51	0.21	0.19	0.13	0.07	4.54	987	506	212	183	29		
	1987	0.41	0.17	0.15	0.12	0.04	4.60	732	298	122	107	19		
	1988	0.37	0.23	0.20	0.13	0.08	4.55	898	334	207	182	25		
	1989	0.34	0.22	0.29	0.13	0.08	4.78	980	337	218	285	16		
	1990	0.27	0.14	0.12	0.14	0.11	4.71	1465	394	203	169	28		
	1991	0.32	0.20	0.17	0.29	0.12	4.69	865	280	172	147	18		
	1992	0.29	0.17	0.11	0.15	0.10	4.75	1055	301	175	112	19		
	1993	0.23	0.18	0.10	0.23	0.44	4.82	891	203	159	92	13		
	1994	0.28	0.22	0.15	0.08	0.08	4.75	1006	286	217	155	18		
	1995	0.25	0.18	0.13	0.11	0.10	4.82	823	206	147	108	12		
	1996	0.32	0.23	0.21	0.16	0.04	4.78	601	191	140	124	10		
	1997	0.24	0.15	0.14	0.22	0.10	4.95	858	204	130	121	10		
Treungen	1974	0.94	0.38	0.33	0.14	0.07	4.27	1039	977	395	343	56		
	1975	0.91	0.37	0.34	0.15	0.06	4.26	894	814	331	304	49		
	1976	1.05	0.50	0.42	0.11	0.06	4.20	706	741	353	297	45		
	1977	0.81	0.44	0.39	0.11	0.05	4.32	1165	944	513	454	56		
	1978	0.87	0.38	0.41	0.14	0.04	4.21	945	822	359	387	58		
	1979													
	1980	0.88	0.37	0.39	0.14	0.04	4.23	759	668	281	296	45		
	1981	0.86	0.39	0.46	0.12	0.05	4.29	949	816	370	437	49		
	1982	0.84	0.45	0.50	0.14	0.07	4.32	1130	948	504	563	54		
	1983	0.83	0.40	0.43	0.18	0.05	4.35	1091	908	431	471	48		
	1984	0.77	0.36	0.27	0.15	0.05	4.27	1196	919	436	325	64		
	1985	0.68	0.39	0.37	0.13	0.04	4.33	892	608	350	333	41		
	1986	1.07	0.57	0.63	0.14	0.07	4.19	1030	1097	582	650	66		
	1987	0.68	0.37	0.37	0.13	0.07	4.39	1133	768	424	418	46		
	1988	0.75	0.50	0.45	0.10	0.05	4.27	1348	1006	670	612	73		-
	1989	0.76	0.61	0.44	0.10	0.06	4.26	754	572	456	329	41		
	1990	0.63	0.42	0.37	0.06	0.07	4.37	1184	747	503	433	51		
	1991	0.59	0.42	0.34	0.13	0.06	4.42	811	480	343	278	31		
	1992	0.60	0.40	0.34	0.08	0.05	4.44	923	556	365	310	33		
	1993	0.59	0.41	0.32	0.11	0.09	4.46	803	472	329	258	28		
	1994	0.54	0.44	0.35	0.08	0.05	4.49	1016	544	448	356	33		
	1995	0.50	0.44	0.40	0.09	0.08	4.48	903	452	394	361	30		
	1996	0.49	0.40	0.37	0.10	0.05	4.49	838	408	335	312	27		
	1997	0.41	0.37	0.32	0.12	0.06	4.56	887	364	330	282	24		
Solhomfjell	1991	0.63	0.44	0.40	0.14	0.08	4.44	878	552	389	355	32		
	1992	0.69	0.47	0.39	0.12	0.07	4.44	958	662	447	376	35		
	1993	0.66	0.45	0.38	0.15	0.08	4.47	920	611	412	347	31		
	1994	0.60	0.48	0.38	0.12	0.06	4.50	1150	686	550	442	36		
	1995	0.55	0.45	0.43	0.14	0.08	4.51	1073	590	484	464	33		
	1996	0.61	0.45	0.41	0.17	0.07	4.46	908	551	410	377	31		
	1997	0.49	0.41	0.45	0.15	0.20	4.63	161	79	66	72	4		

Tabell A.1.21 forts.

Stasjon	Ar	Arlige middelkonsentrasjoner						$\begin{array}{\|c\|} \hline \text { Ársnedbør } \\ \hline \mathrm{mm} \\ \hline \end{array}$	Årlig våtavsetning				Tørravsetning	
		$\begin{gathered} \hline \mathrm{SO} 4-\mathrm{S} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	NO3-N mg / l	NH4-N mg / l	Ca mg / l	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} / \mathrm{I} \end{gathered}$	pH		SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{gathered} \mathrm{H}+ \\ \mathrm{mekv} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$
Møsvatn	1993	0.28	0.22	0.14	0.07	0.07	4.69	699	194	155	99	14		
	1994	0.32	0.27	0.17	0.07	0.02	4.66	788	250	209	136	17		
	1995	0.28	0.22	0.14	0.06	0.02	4.65	660	186	147	92	15		
	1996	0.30	0.27	0.21	0.07	0.02	4.66	592	178	161	126	13		
	1997	0.21	0.22	0.18	0.08	0.03	4.77	705	150	155	129	12		
Lardal	1990	0.70	0.45	0.35	0.09	0.07	4.33	1340	938	599	469	62	99	199
	1991	0.72	0.47	0.36	0.12	0.08	4.38	847	609	401	306	35	144	231
	1992	0.68	0.47	0.38	0.13	0.07	4.42	892	610	421	338	34	91	154
	1993	0.65	0.42	0.32	0.09	0.05	4.45	967	625	402	313	35	66	134
	1994	0.52	0.45	0.35	0.08	0.05	4.53	1216	631	542	429	36	78	159
	1995	0.65	0.47	0.42	0.11	0.09	4.42	1179	764	556	497	45		
	1996	0.50	0.36	0.29	0.11	0.06	4.49	940	472	341	269	30		
	1997	0.58	0.45	0.43	0.31	0.17	4.61	640	373	288	276	16		
Prestebakke	1986	1.08	0.54	0.47	0.23	0.19	4.20	699	753	380	328	44		
	1987	0.78	0.42	0.37	0.16	0.08	4.37	830	650	349	307	35	212	343
	1988	0.77	0.47	0.37	0.16	0.15	4.25	989	758	466	370	55	219	307
	1989	0.97	0.69	0.47	0.18	0.21	4.22	697	678	478	330	42	191	301
	1990	0.87	0.57	0.42	0.18	0.18	4.28	816	710	465	342	42	157	252
	1991	0.79	0.55	0.43	0.20	0.25	4.37	805	638	445	346	35	98	190
	1992	0.83	0.60	0.47	0.16	0.15	4.35	832	687	497	392	37	140	154
	1993	0.74	0.47	0.36	0.17	0.13	4.41	775	573	364	278	30	119	228
	1994	0.53	0.39	0.24	0.17	0.13	4.48	892	477	352	216	29	138	234
	1995	0.65	0.54	0.46	0.18	0.17	4.45	746	487	406	346	26	126	
	1996	0.64	0.56	0.43	0.27	0.18	4.42	656	419	368	283	25	126	
	1997	0.42	0.39	0.29	0.08	0.06	4.52	813	338	317	237	24	97	
Løken	1973	1.03				0.06	4.48	569	586			19		
	1974	0.94				0.08	4.43	831	781			31		
	1975	1.03	0.41	0.42		0.08	4.32	657	677	269	276	31		
	1976	1.20	0.49	0.50	0.40	0.09	4.39	533	640	261	267	22		
	1977	0.96	0.41	0.43	0.22	0.07	4.41	699	671	287	301	27		
	1978	1.10	0.48	0.52	0.24	0.07	4.25	597	657	287	310	34		
	1979	1.03	0.49	0.57	0.30	0.07	4.22	784	808	384	447	47		
	1980	0.97	0.39	0.49	0.25	0.08	4.33	695	674	271	341	33		
	1981	0.77	0.36	0.51	0.20	0.06	4.48	700	539	252	357	23		
	1982	1.06	0.60	0.79	0.24	0.11	4.33	885	908	515	679	40		
	1983	0.91	0.47	0.62	0.28	0.10	4.42	656	595	311	404	25		
	1984	0.91	0.49	0.76	0.30	0.10	4.45	747	678	365	567	27		
	1985	0.86	0.47	0.51	0.30	0.09	4.36	894	768	421	459	39		
	1986	0.96	0.57	0.56	0.26	0.08	4.31	701	671	399	391	34		
	1987	0.79	0.40	0.45	0.17	0.06	4.40	861	679	348	387	35		
	1988	0.76	0.49	0.49	0.20	0.08	4.31	882	669	435	429	43		
	1989	0.92	0.69	0.57	0.18	0.10	4.26							
	1990	0.74	0.47	0.44	0.12	0.08	4.36	719	530	337	313	31		
	1991	0.65	0.50	0.44	0.18	0.09	4.41	722	467	359	320	28		
	1992	0.61	0.44	0.38	0.11	0.05	4.46	686	418	302	261	24		
	1993	0.66	0.44	0.38	0.18	0.05	4.46	714	468	316	270	25		
	1994	0.43	0.37	0.29	0.30	0.06	4.64	740	316	277	213	17		
	1995	0.52	0.43	0.36	0.24	0.09	4.56	656	340	282	235	18		
	1996	0.51	0.39	0.39	0.28	0.09	4.62	673	344	264	264	16		
	1997	0.42	0.40	0.41	0.16	0.06	4.63	549	229	220	223	13		
Nordmoen	1987	0.72	0.37	0.33	0.14	0.03	4.34	1016	727	375	335	46	148	348
	1988	0.88	0.48	0.46	0.13	0.04	4.25	1085	960	519	500	61	171	357
	1989	0.88	0.57	0.40	0.14	0.05	4.26	816	719	463	328	44	144	356
	1990	0.77	0.44	0.35	0.10	0.05	4.31	822	636	366	286	40	137	332
	1991	0.59	0.40	0.31	0.09	0.04	4.43	781	459	312	240	29	117	284
	1992	0.58	0.40	0.27	0.10	0.03	4.42	821	473	327	218	31	99	276
	1993	0.56	0.37	0.25	0.08	0.03	4.45	927	517	340	236	33	84	246
	1994	0.45	0.39	0.29	0.07	0.03	4.55	828	373	326	242	23	97	280
	1995	0.53	0.37	0.33	0.12	0.06	4.49	791	415	292	257	25	88	279
	1996	0.43	0.34	0.23	0.14	0.04	4.52	837	358	286	- 195	25	91	303
	1997	0.33	0.31	0.26	0.07	0.02	4.63	775	254	240	202	18		
Fagernes	1990	0.41	0.22	0.16	0.10	0.02	4.53	550	228	119	86	16		
	1991	0.38	0.21	0.24	0.22	0.04	4.75	395	150	84	94	7		
	1992	0.43	0.24	0.19	0.10	0.01	4.63	656	279	160	126	15		
	1993	0.26	0.15	0.12	0.08	0.02	4.77	619	162	95	74	10		
	1994	0.28	0.25	0.15	0.08	0.02	4.70	586	166	146	88	12		
	1995	0.32	0.22	0.29	0.14	0.07	4.81	465	151	101	134	7		
	1996	0.25	0.23	0.20	0.17	0.03	4.78	635	159	145	124	11		
	1997	0.21	0.15	0.16	0.09	0.02	4.89	565	116	83	92	6		
Gulsvik	1974	0.81	0.38	0.28	0.13	0.04	4.28	783	634	298	219	41		
	1975	0.89	0.40	0.34	0.21	0.05	4.36	560	498	224	190	24		
	1976	0.85	0.38	0.30	0.10	0.03	4.35	641	545	244	192	29		
	1977	0.77	0.39	0.35	0.13	0.03	4.35	683	526	266	239	31		
	1978	0.94	0.40	0.38	0.16	0.03	4.22	693	651	277	263	42		
	1979	1.27	0.53	0.62	0.23	0.04	4.11	790	1003	419	490	61		
	1980	0.78	0.25	0.27	0.13	0.03	4.33	667	520	167	180	31		
	1981	0.86	0.35	0.40	0.13	0.03	4.30	628	540	220	251	31		
	1982	0.89	0.44	0.52	0.22	0.05	4.38	778	696	346	408	33		
	1983	0.94	0.40	0.58	0.25	0.05	4.39	664	623	263	384	27		

Tabell A.1.21 forts.

Tabell A.1.21 forts.

Stasjon	År	Arlige middelkonsentrasjoner						Ȧrsnedbør	Árlig våtavsetning				Torravsetning	
		$\begin{gathered} \mathrm{SO} 4-\mathrm{S} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	NO3-N mg/l	NH4-N mg / l	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	Mg mg / l	pH	mm	SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	H+ mekv/m²	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \end{gathered}$
Nausta forts.	1991	0.19	0.12	0.09	0.12	0.30	4.83	2411	470	291	219	35	80	
	1992	0.21	0.13	0.07	0.09	0.15	4.80	2962	633	373	205	47	73	
	1993	0.23	0.13	0.10	0.17	0.39	4.87	2215	509	277	211	30	78	
	1994	0.20	0.12	0.15	0.10	0.19	4.96	2747	563	339	415	30	66	
	1995	0.18	0.11	0.13	0.08	0.17	4.91	2510	451	283	321	31	64	
	1996	0.20	0.15	0.14	0.07	0.10	4.87	1575	312	241	225	21		
	1997	0.15	0.12	0.13	0.11	0.23	5.01	2428	361	294	316	24		
Kărvatn	1978*	0.16	0.05	0.09	0.11	0.13	4.98	1317	211	66	119	14		
	1979	0.23	0.09	0.08	0.10	0.10	4.63	1248	287	112	100	29		
	1980	0.20	0.07	0.08	0.11	0.13	4.88	1225	245	86	98	16		
	1981	0.20	0.08	0.15	0.17	0.25	4.96	1101	220	88	165	12		
	1982	0.26	0.08	0.11	0.15	0.16	4.87	995	256	78	112	13		
	1983	0.14	0.05	0.06	0.18	0.20	5.08	1918	265	100	106	16		
	1984	0.24	0.10	0.18	0.22	0.18	5.04	914	216	91	166	8		
	1985	0.20	0.07	0.10	0.15	0.11	5.00	1462	298	100	149	15		
	1986	0.20	0.07	0.13	0.10	0.11	4.95	1277	260	89	162	14		
	1987	0.24	0.09	0.12	0.15	0.17	4.87	1464	357	129	176	20	68	
	1988	0.11	0.06	0.09	0.13	- 0.19	5.09	1550	164	91	143	13	76	149
	1989	0.11	0.06	0.12	0.13	0.26	5.11	1539	168	97	187	12	55	116
	1990	0.11	0.05	0.07	0.07	0.14	5.07	1520	173	69	105	13	60	107
	1991	0.12	0.06	0.10	0.12	0.24	5.14	1619	190	102	170	12	52	89
	1992	0.10	0.07	0.06	0.11	0.18	5.17	1620	159	113	94	11	62	97
	1993	0.10	0.06	0.12	0.12	0.18	5.16	1423	148	87	169	10	45	88
	1994	0.11	0.07	0.08	0.12	0.15	5.12	1475	168	100	120	11	53	124
	1995	0.08	0.05	0.06	0.10	0.15	5.17	1661	134	80	106	11	39	107
	1996	0.09	0.07	0.10	0.10	0.13	5.16	1170	107	79	115	8	47	126
	1997	0.09	0.06	0.11	0.12	0.23	5.22	1842	171	109	208	11	38	129
Selbu	1990	0.16	0.06	0.02	0.06	0.10	4.84	1339	220	83	31	19		
	1991	0.18	0.09	0.06	0.11	0.22	4.94	1336	240	125	80	15		
	1992	0.14	0.07	0.03	0.11	0.20	4.95	1402	193	103	45	16		
	1993	0.15	0.09	0.06	0.11	0.17	5.01	1290	193	117	80	13		
	1994	0.16	0.09	0.11	0.07	0.12	5.02	1143	179	105	129	11		
	1995	0.15	0.08	0.12	0.08	0.13	5.01	1411	206	113	166	14		
	1996	0.13	0.08	0.13	0.19	0.18	5.15	1039	132	86	131	7		
	1997	0.11	0.06	0.10	0.16	0.20	5.26	1682	183	105	172	9		
Haylandet	1987*	0.34	0.15	0.36	0.14	0.18	4.98	803	269	124	292	9	9795	
	1988	0.22	0.11	0.17	0.16	0.20	5.00	1311	283	147	224	13		
	1989	0.17	0.10	0.14	0.20	0.45	5.11	1590	270	162	220	12		
	1990	0.21	0.10	0.13	0.14	0.26	4.92	1605	337	162	214	19		
	1991	0.23	0.11	0.20	0.21	0.31	5.10	1312	302	146	257	10		
	1992	0.15	0.09	0.15	0.16	0.36	5.16	1415	214	122	215	10		
	1993	0.20	0.12	0.20	0.17	0.35	5.10	1145	230	138	234	9		
	1994	0.15	0.09	0.22	0.12	0.25	5.23	1182	175	107	265	7		
	1995	0.17	0.10	0.22	0.17	0.27	5.20	1509	259	153	332	9		
	1996	0.16	0.10	0.21	0.16	0.26	5.11	813	132	84	167	6		
	1997	0.14	0.10	0.22	0.17	0.32	5.25	1418	196	145	308	8		
Namsvatn	1991	0.18	0.11	0.20	0.08	0.12	5.13	1014	181	115	198	8		
	1992	0.14	0.10	0.12	0.12	0.19	5.12	1081	155	105	129	8		
	1993	0.14	0.10	0.17	0.15	0.16	5.20	1004	144	98	172	6		
	1994	0.14	0.10	0.17	0.29	0.11	5.18	902	129	94	152	6		
	1995	0.16	0.10	0.20	0.11	0.15	5.18	1201	188	121	243	8		
	1996	0.17	0.12	0.20	0.11	0.11	5.10	697	117	86	139	6		
Tustervatn	1973	0.24				0.18	4.94	1336	321			15	 96 88 131 40 119 65 125 62 148 49 123 44 126 48 147 47 132 44 139 44 199	
	1974	0.28				0.11	4.88	695	195			9		
	1975	0.25				0.33	4.91	1756	439			22		
	1976	0.27				0.16	4.97	1064	287			11		
	1977	0.30	0.09	0.11	0.17	0.16	4.91	1111	333	100	122	14		
	1978	0.23	0.08	0.10	0.16	0.16	4.85	1128	259	90	113	16		
	1979	0.28	0.08	0.13	0.15	0.11	$4.73{ }^{\circ}$	1168	327	93	152	22		
	1980	0.27	0.08	0.14	0.47	0.16	4.98	858	229	71	122	9		
	1981	0.18	0.07	0.10	0.21	0.15	5.00	1099	198	77	110	11		
	1982	0.16	0.08	0.09	0.22	0.47	4.98	1385	227	109	121	15		
	1983	0.20	0.06	0.09	0.16	0.22	4.90	1665	337	101	142	21		
	1984	0.24	0.09	0.09	0.12	0.10	4.85	1056	250	94	89	15		
	1985	0.22	0.08	0.10	0.12	0.15	4.93	1344	298	107	132	16		
	1986	0.26	0.09	0.12	0.12	0.15	4.88	1060	278	94	131	14		
	1987	0.22	0.08	0.11	0.12	0.12	4.89	1163	253	98	133	15		
	1988	0.13	0.07	0.09	0.13	0.15	5.04	1159	145	83	106	10		
	1989	0.19	0.08	0.10	0.18	0.40	5.00	1825	346	137	178	18		
	1990	0.16	0.09	0.14	0.11	0.21	4.99	1508	245	133	214	16		
	1991	0.17	0.10	0.14	0.14	0.21	5.04	1400	242	137	197	13		
	1992	0.15	0.08	0.15	0.19	0.37	5.12	1507	223	126	221	11		
	1993	0.14	0.08	0.16	0.24	0.50	5.19	1340	182	111	209	9		
	1994	0.10	0.08	0.13	0.12	0.15	5.24	1117	114	87	144	6		
	1995	0.09	0.06	0.12	0.13	0.21	5.22	1515	136	96	186	9		
	1996	0.12	0.09	0.16	0.15	0.18	5.11	1084	132	97	176	8		
	1997	0.08	0.06	0.18	0.17	0.30	5.34	1528	121	98	271	7		

Tabell A.1.21 forts.

Stasjon	Ar	Arlige middelkonsentrasjoner						$\begin{array}{\|c\|} \hline \text { Ársnedbør } \\ \hline \mathrm{mm} \\ \hline \end{array}$	Árlig våtavsetning				Torravsetning	
		$\begin{gathered} \mathrm{SO} 4-\mathrm{S} \\ \mathrm{mg} / \mathrm{l} \end{gathered}$	NO3-N mg / I	NH4-N mg/l	$\begin{gathered} \mathrm{Ca} \\ \mathrm{mg} / \mathrm{l} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{mg} / \mathrm{I} \end{gathered}$	pH		SO4-S $\mathrm{mg} / \mathrm{m}^{2}$	NO3-N $\mathrm{mg} / \mathrm{m}^{2}$	NH4-N $\mathrm{mg} / \mathrm{m}^{2}$	$\begin{gathered} \mathrm{H}+ \\ \text { mekv/m²} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{mg} / \mathrm{m}^{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{mg} / \mathrm{m}^{2} \\ \hline \end{gathered}$
Øverbygd	1987*	0.23	0.05	0.08	0.12	0.14	4.92	424	100	23	35	5		
	1988	0.20	0.06	0.05	0.09	0.10	4.84	555	112	33	30	8		
	1989	0.16	0.06	0.06	0.09	0.18	4:98	794	125	45	51	8		
	1990	0.22	0.06	0.07	0.10	0.15	4.90	708	152	44	52	9		
	1991	0.25	0.09	0.07	0.11	0.18	4.90	706	176	60	49	9		
	1992	0.17	0.07	0.06	0.12	0.18	5.08	662	109	44	38	6		
	1993	0.17	0.07	0.07	0.26	0.43	5.06	680	117	48	45	6		
	1994	0.20	0.10	0.13	0.12	0.14	5.03	538	108	56	68	5		
	1995	0.11	0.06	0.11	0.14	0.11	5.13	659	73	42	74	5		
	1996	0.14	0.07	0.10	0.10	0.15	5.01	527	72	35	52	5		
	1997	0.10	0.06	0.11	0.16	0.28	5.13	603	59	37	69	4		
Jergul	1977	0.45	0.13	0.11	0.20	0.04	4.75	344	155	45	38	6		
	1978	0.43	0.10	0.11	0.13	0.02	4.52	351	151	35	39	11		
	1979	0.59	0.18	0.13	0.14	0.03	4.33	306	181	55	40	14		
	1980	0.42	0.12	0.09	0.12	0.03	4.57	262	110	31	24	7		
	1981	0.46	0.13	0.12	0.11	0.02	4.57	434	200	56	52	12		
	1982	0.36	0.13	0.14	0.10	0.03	4.65	473	172	62	65	11		
	1983	0.41	0.11	0.11	0.13	0.04	4.60	382	156	41	43	10		
	1984	0.50	0.15	0.22	0.14	0.03	4.50	342	172	50	76	11		
	1985	0.43	0.12	0.34	0.13	0.05	4.63	406	174	49	137	10		
	1986	0.49	0.16	0.14	0.12	0.04	4.60	250	122	40	34	6		
	1987	0.41	0.12	0.10	0.11	0.03	4.67	296	121	35	29	6	180	
	1988	0.30	0.13	0.10	0.09	0.03	4.65	406	122	54	40	9	134	81
	1989	0.42	0.14	0.15	0.09	0.03	4.63	385	163	54	59	9	77	66
	1990	0.22	0.15	0.08	0.04	0.03	4.69	276	62	41	23	6	114	68
	1991	0.31	0.14	0.10	0.05	0.03	4.65	377	118	51	37	8	108	100
	1992	0.23	0.13	0.05	0.08	0.03	4.80	449	101	60	22	7	92	66
	1993	0.29	0.14	0.07	0.11	0.06	4.74	343	99	47	22	6	97	53
	1994	0.24	0.15	0.07	0.06	0.03	4.78	269	65	41	17	4	65	58
	1995	0.25	0.11	0.07	0.06	0.03	4.76	459	116	49	32	8	94	62
	1996	0.18	0.12	0.10	0.14	0.06	4.91	310	56	38	29	4	63	53
Karasjok	1997	0.15	0.11	0.13	0,10	0.06	5.03	212	32	23	27	9	81	119
Svanvik	1987	0.68	0.12	0.21	0.13	0.10	4.49	365	247	42	76	12	711	173
	1988	0.57	0.13	0.13	0.18	0.14	4.49	390	221	52	50	13	602	160
	1989	0.72	0.12	0.10	0.19	0.12	4.47	424	306	50	42	14	571	130
	1990	0.48	0.13	0.08	0.11	0.13	4.50	266	127	36	22	8	691	123
	1991	0.56	0.14	0.16	0.08	0.09	4.55	389	218	55	61	11	652	139
	1992	0.51	0.12	0.22	0.10	0.10	4.71	432	220	53	93	8	422	165
	1993	0.62	0.16	0.23	0.16	0.14	4.66	331	207	52	78	7	530	135
	1994	0.58	0.17	0.35	0.12	0.12	4.71	379	219	66	132	7	541	111
	1995	0.59	0.11	0.19	0.13	0.13	4.62	395	233	45	74	9	642	133
	1996	0.44	0.16	0.22	0.22	0.17	4.73	352	154	57	76	7	471	125
	1997	0.48	0.14	0.29	0.20	0.14	4.79	278	134	39	82	4	637	145
Karpdalen	1991	0.91	0.16	0.14	0.16	0.28	4.33	256	233	42	36	12		
	1992	0.96	0.20	0.31	0.26	0.35	4.43	315	302	62	98	12		
	1993	0.86	0.24	0.23	0.29	0.43	4.41	258	223	61	59	10		
	1994	0.60	0.23	0.18	0.15	0.21	4.58	414	250	96	73	11		
	1995	0.63	0.19	0.18	0.35	0.31	4.52	383	241	71	69	11		
	1996	0.49	0.15	0.17	0.20	0.24	4.62	458	224	69	76	24		
	1997	0.56	0.13	0.14	0.18	0.15	4.56	304	170	39	44	8		
Ny-Ȧlesund	1981	0.24	0.05	0.05	1.03	0.41	5.11	366	88	20	17	3		
	1982	0.39	0.08	0.05	0.92	2.01	5.01	206	80	16	10	2		
	1983	0.25	0.05	0.10	0.40	0.42	5.13	237	59	11	24	2		
	1984	0.64	0.17	0.21	0.71	0.93	4.60	366	233	62	76	9		
	1985	0.61	0.14	0.13	0.71	1.29	4.72	237	144	33	31	5		
	1986	0.40	0.07	0.49	0.55	0.58	4.98	306	122	20	150	3		
	1987	0.69	0.12	0.10	0.64	0.91	4.63	390	271	46	40	9		
	1988	0.27	0.07	0.21	0.54	0.58	5.18	307	84	21	64	2		
	1989	0.38	0.05	0.06	0.87	1.48	5.55	295	113	15	19	1	35	
	1990	0.33	0.07	0.06	0.52	0.79	4.92	410	137	30	26	5	41	20
	1991	0.34	0.11	0.10	0.80	1.13	4.96	424	145	47	44	5	35	27
	1992	0.43	0.10	0.11	0.80	1.03	5.11	272	116	27	29	2	31	21
	1993	0.29	0.10	0.08	0.51	0.91	5.02	489	140	47	41	5	32	29
	1994	0.32	0.08	0.29	0.59	0.63	5.35	280	90	22	80	1	24	30
	1995	0.30	0.10	0.15	0.89	0.79	5.26	238	71	23	36	1	25	
	1996	0.36	0.13	0.32	0.56	0.90	4.92	504	181	64	162	6	26	
	1997	0.34	0.10	0.44	1.46	2.98	5.60	320	109	32	139	8	27	

Tabell A.2.1: Månedlige og årlige middelkonsentrasjoner av bly i nedbøren på norske bakgrunnstasjoner, 1997.
Enhet: $\mu \mathrm{g} /$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ARR
Birkenes	4,04	1,21	1,94	0,80	0,90	1,59	1,64	1,83	1,30	1,17	2,76	2,39	1,73
Lista	4,43	1,62	3,08	14,63	2,86	7,09	6,64	2,44	2,01	28,78	2,67	1,68	7,50
Solhomfjell	1,77	1,90	3,02										
Møsvatn	0,64	0,49	0,51	10,57	1,22	2,15	0,86	1,05	0,37	0,45	0,94	0,29	1,02
Nordmoen	1,82	0,93	1,39										
Hurdal	2,30	1,19	1,62	2,19	0,42	0,73	1,10	1,76	0,88	0,81	2,47	1,58	1,25
Osen	0,40	0,69	0,70	1,33	0,42	0,67	1,29	1,39	0,39	2,38	1,16	0,74	0,93
Valdalen	1,12	1,14	1,45	1,15	1,36	1,86	1,15	1,20	0,79	0,30	1,24	0,99	1,12
Ualand	2,06	1,12	2,01	0,63	1,01	2,36	1,40	2,48	1,24	0,96	1,77	0,88	1,34
Kårvatn	0,18	0,20	0,80	0,45	0,15	1,05	0,88	0,90	1,74	0,17	0,18	0,09	0,69
Namsvatn	0,25	0,37	0,34										
Øverbygd	0,18	0,39	0,33	1,87	0,45	1,79	0,79	0,65	0,17	0,29	0,53	1,20	0,49
Karasjok	0,79	0,77	1,18	0,65	1,20	2,84	1,62	0,46	0,31	0,50	0,43	0,28	0,63
Svanvik	0,38	0,71	1,64	1,65	2,38	1,63	1,34	1,24	0,92	6,34	0,76	0,64	1,88

Tabell A.2.2: Månedlige og årlige middelkonsentrasjoner av kadmium i nedbøren på norske bakgrunnstasjoner, 1997.
Enhet: $\mu \mathrm{g} /$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	0,110	0,011	0,036	0,012	0,018	0,039	0,051	0,038	0,020	0,019	0,049	0,040	0,032
Lista	0,096	0,014	0,073	0,017	0,035	0,101	0,059	0,066	0,030	0,032	0,101	0,070	0,052
Solhomfjell	0,046	0,006	0,076										
Møsvatn	0,045	0,017	0,008	0,014	0,013	0,024	0,015	0,020	0,002	0,015	0,087	0,010	0,022
Nordmoen	0,053	0,023	0,050										
Hurdal	0,140	0,038	0,074	0,346	0,005	0,018	0,058	0,047	0,018	0,030	0,079	0,130	0,055
Osen	0,005	0,016	0,009	0,032	0,004	0,017	0,030	0,059	0,007	0,028	0,030	0,020	0,021
Valdalen	0,080	0,053	0,086	0,028	0,017	0,065	0,043	0,049	0,047	0,025	0,054	0,110	0,047
Ualand	0,041	0,002	0,022	0,006	0,019	0,041	0,047	0,061	0,022	0,014	0,017	0,020	0,020
Kårvatn	0,005	0,006	0,005	0,007	0,002	0,023	0,024	0,026	0,011	0,030	0,008	0,010	0,008
Namsvatn	0,026	0,314	0,002										
Øverbygd	0,007	0,002	0,002	0,009	0,011	0,075	0,015	0,029	0,002	0,002	0,002	0,020	0,009
Karasjok	0,016	0,031	0,031	0,057	0,048	0,093	0.042	0,017	0,014	0,029	0,045	0,004	0,024
Svanvik	1,018	0,081	0,091	0,240	0,179	0,188	0,078	0,146	0,093	0,068	0,095	0,040	0,108

Tabell A.2.3: Månedlige og årlige middelkonsentrasjoner av sink i nedbøren på norske bakgrunnstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	11,99	2,07	4,43	8,02	4,34	5,22	5,11	4,44	2,75	2,68	5,50	6,35	4,16
Lista	8,61	7,17	14,71	8,69	5,00	14,93	6,16	5,19	5,95	4,59	5,13	3,64	6,59
Solhomfjell	14,13	4,13	10,99										
Møsvatn	6,26	3,39	2,35	2,41	4,42	6,90	3,90	6,70	1,84	3,44	7,27	0,97	4,45
Nordmoen	6,99	3,08	6,44										
Hurdal	12,29	4,63	10,92	53,03	1,80	2,66	3,71	3,99	3,19	4,47	6,40	10,22	5,35
Osen	2,00	4,72	7,46	9,54	3,32	4,47	4,71	4,75	2,27	4,77	2,53	3,80	$\mathbf{3 , 9 6}$
Valdalen	4,51	4,50	12,60	3,66	3,29	11,12	9,92	4,01	7,82	3,12	15,94	-	-
Ualand	3,85	1,62	3,53	1,49	4,23	4,63	4,73	4,60	2,07	1,76	4,45	1,36	2,55
Kårvatn	1,37	0,73	2,68	0,64	0,84	4,42	2,92	2,39	1,96	4,47	1,93	0,67	1,56
Namsvatn	3,88	2,27	2,97										
Øverbygd	1,71	1,06	6,08	1,02	2,67	13,43	6,10	3,54	0,88	2,13	2,87	4,30	2,69
Karasjok	4,27	4,61	-	6,74	\cdot	\cdot	7,95	3,10	2,77	4,50	3,66	1,02	3,10
Svanvik	1,29	2,43	5,60	3,98	8,53	12,09	4,17	3,73	2,46	3,51	3,47	6,75	3,84

Tabell A.2.4: Månedlige og årlige middelkonsentrasjoner av nikkel i nedbøren på norske bakgrunnstasjoner, 1997.
Enhet: $\mu \mathrm{g} /$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES
AR												
Lista	0,52	0,18	0,44	0,19	0,41	0,87	0,93	0,56	0,26	0,15	0,30	0,21
Solhomfjell	0,42	0,30	0,88									
Møsvatn	0,89	0,36	$<0,20$	$<0,20$	0,38	0,30	0,60	0,63	0,40	$<0,20$	0,43	$<0,20$
Valdalen	$<0,20$	$<0,20$	0,34	0,43	0,22	0,36	1,10	0,45	0,30	$<0,20$	0,54	0,50
Ualand	0,24	$<0,20$	0,29	$<0,20$	0,23	0,36	0,35	0,29	$<0,20$	$<0,20$	$<0,20$	$<0,20$
Uamsvatn	$<0,20$	$<0,20$	0,49									
Na,15												
Øverbygd	0,22	0,24	$<0,20$	$<0,20$	$<0,20$	0,84	$<0,20$	$<0,20$	$<0,20$	$<0,20$	$<0,20$	$<0,20$
Svanvik	5,04	7,48	12,65	40,32	19,84	46,05	19,41	15,54	24,70	18,64	6,33	12,49

Tabell A.2.5: Månedlige og årlige middelkonsentrasjoner av arsen inedbøren på norske bakgrunnstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	0,52	0,18	0,44	0,19	0,41	0,87	0,93	0,56	0,26	0,15	0,30	0,21	0,48
Solhomfjell	0,22	0,26	0,41										
Møsvatn	$<0,10$	$<0,10$	0,12	0,11	$<0,10$	$<0,10$	0,10	0,15	$<0,10$	$<0,10$	$<0,10$	$<0,10$	0,10
Valdalen	$<0,10$	$<0,10$	$<0,10$	$<0,10$	$<0,10$	$<0,10$	$<0,10$	$<0,10$	0,13	$<0,10$	$<0,10$	0,16	0,07
Ualand	$<0,10$	$<0,10$	$<0,10$	$<0,10$	$<0,10$	0,20	0,15	0,21	0,16	0,13	$<0,10$	0,21	0,11
Namsvatn	0,11	$<0,10$	$<0,10$										
Øverbygd	$<0,10$	$<0,10$	0,12	$<0,10$	$<0,10$	$<0,10$	0,15	$<0,10$	$<0,10$	0,26	$<0,10$	$<0,10$	0,09
Svanvik	0,22	1,03	1,45	4,34	3,71	2,99	1,28	2,24	1,97	0,92	1,18	1,37	1,78

Tabell A.2.6: Månedlige og årlige middelkonsentrasjoner av kopper i nedbøren på norske bakgrunnstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.

STASJON	JAN	FEB	MAR	APR	MA	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	0,81	1,76	1,68	0,59	1,29	2,19	0,79	0,67	0,74	0,61	0,74	0,58	0,98
Solhomfjell	1,67	3,11	1,88										
Møsvatn	1,58	0,75	0,46	0,14	1,10	2,00	1,30	1,64	0,34	0,23	0,68	0,28	1,01
Valdalen	0,39	0,69	1,32	0,70	0,59	1,73	1,54	0,94	2,26	0,22	1,26	1,47	1,08
Ualand	0,34	0,25	0,44	0,27	0,41	0,90	0,68	0,67	0,32	0,22	0,49	0,23	0,35
Namsvatn	0,22	0,31	0,33										
Øverbygd	0,05	0,29	0,19	0,19	0,44	2,43	0,89	0,45	0,17	0,28	0,49	0,81	0,31
Svanvik	4,07	15,18	20,09	68,39	27,64	45,39	22,22	14,71	28,46	20,99	13,16	22,24	21,40

Tabell A.2.7: Månedlige og årlige middelkonsentrasjoner av kobolt i nedbøren på norske bakgrunnstasjoner, 1997.
Enhet: $\mu \mathrm{g} /$ l.
$\left.\begin{array}{|l|rrrrrrrrrrrr||}\hline \text { STASJON } & \text { JAN } & \text { FEB } & \text { MAR } & \text { APR } & \text { MAI } & \text { JUN } & \text { JUL } & \text { AUG } & \text { SEP } & \text { OKT } & \text { NOV } & \text { DES } \\ \text { ARR } \\ \hline \text { Lista } & 0,03 & 0,03 & 0,09 & 0,04 & 0,03 & 0,11 & 0,05 & 0,03 & 0,03 & 0,02 & 0,02 & 0,02 \\ \text { Solhomfjell } & 0,04 & <0,01 & 0,13 & & & & & & & & & \\ \text { Møsvatn } & 0,05 & <0,01 & <0,01 & <0,01 & 0,01 & 0,05 & 0,03 & 0,02 & 0,02 & <0,01 & 0,05 & <0,01 \\ \text { Valdalen } & <0,01 & <0,01 & <0,01 & <0,01 & <0,01 & <0,01 & 0,05 & 0,03 & <0,01 & <0,01 & 0,02 & 0,02 \\ \text { Ualand } & <0,01 & <0,01 & 0,05 & <0,01 & 0,03 & 0,04 & 0,04 & 0,04 & 0,00 & <0,01 & <0,01 & <0,01 \\ \text { Ua,02 } \\ \text { Namsvatn } & <0,01 & <0,01 & <0,01 & & & & & & & & & \\ \text { Øverbygd } & <0,01 & <0,01 & <0,01 & <0,01 & 0,03 & 0,22 & 0,02 & <0,01 & 0,02 & <0,01 & <0,01 & 0,04 \\ \text { Svanvik } & 0,15 & 0,30 & 0,48 & 1,36 & 0,69 & 1,72 & 0,71 & 0,52 & 0,76 & 0,54 & 0,22 & 0,30\end{array}\right) 0,010$

Tabell A.2.8: Månedlige og årlige middelkonsentrasjoner av krom i nedbøren på norske bakgrunnstasjoner 1997.
Enhet: $\mu \mathrm{g} / \mathrm{l}$.
$\left.\begin{array}{|l|rrrrrrrrrrrr||}\hline \text { STASJON } & \text { JAN } & \text { FEB } & \text { MAR } & \text { APR } & \text { MAI } & \text { JUN } & \text { JUL } & \text { AUG } & \text { SEP } & \text { OKT } & \text { NOV } & \text { DES } \\ \text { AR } \\ \hline \text { Lista } & <0,20 & <0,20 & 0,22 & 0,17 & <0,20 & 0,28 & 0,29 & 0,18 & 0,14 & 0,11 & 0,18 & <0,20 \\ \text { Solhomfjell } & <0,20 & <0,20 & 1,04 & & & & & & & & & 0,16 \\ \text { Møsvatn } & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 \\ \text { Valdalen } & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & 0,31 & 0,29 & <0,20 & 0,23 & <0,20 & 0,22 & 0,31 \\ \text { Ualand } & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 \\ \text { Namsvatn } & <0,20 & <0,20 & <0,20 & & & & & & & & & \\ \text { Øverbygd } & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & 0,61 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 & <0,20 \\ \text { Svanvik } & <0,20 & 0,12 & 0,17 & 0,36 & 0,35 & 1,33 & 0,44 & 0,25 & 0,34 & 0,25 & 0,32 & 0,22\end{array}\right) 0,290$

Tabell A.2.9: Månedlig og årlig våtavsetning av bly på norske
bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	86	282	148	21	49	150	72	160	145	148	455	441	2057
Lista	268	287	187	693	129	248	623	439	187	5049	267	254	9144
Solhomfjell	30	253	80										
Møsvatn	7	16	27	68	49	225	62	89	24	19	55	10	651
Nordmoen	32	78	27										
Hurdal	29	79	29	5	50	54	53	124	80	0	155	255	137
Osen	5	38	10	13	66	39	48	138	29	149	66	57	660
Valdalen	11	71	25	23	152	95	45	175	63	22	50	43	775
Ualand	205	404	266	61	79	103	87	289	320	176	225	192	2408
Kảrvatn	19	14	231	117	12	40	49	53	632	39	9	3	1215
Namsvatn	54	30	57										
\varnothing Øerbygd	23	14	17	67	12	5	27	33	14	19	17	30	278
Karasjok	3	5	9	3	20	16	12	26	14	5	7	7	127
Svanvik	6	18	19	18	32	11	21	81	38	243	17	10	514

Tabell A.2.10: Månedlig og årlig våtavsetning av kadmium på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAl	JUN	JUL	AUG	SEP	OKT	NOV	DES	ARR
Birkenes	2	3	3	0	1	4	2	3	2	2	8	9	38
Lista	6	2	4	1	2	4	5	12	3	6	10	11	64
Solhomfjell	1	1	2										
Møsvatn	1	1	0	0	1	3	1	2	0	1	5	0	15
Nordmoen	1	2	1										
Hurdal	2	2	1	1	1	1	3	3	2	0	5	20	41
Osen	0	1	0	0	1	1	1	6	1	2	2	1	15
Valdalen	1	3	1	1	2	3	2	7	4	2	2	5	33
Ualand	4	1	3	1	1	2	3	7	6	3	2	4	36
Kårvatn	1	0	1	2	0	1	1	2	4	1	0	0	14
Namsvatn	6	25	0										
Øverbygd	1	0	0	0	0	0	1	1	0	0	0	0	5
Karasjok	0	0	0	0	1	1	0	1	1	0	1	0	5
Svanvik	15	2	1	3	2	1	1	10	4	3	2	1	45

Tabell A.2.11: Månedlig og årlig våtavsetning av sink på norske
bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	254	484	338	208	236	493	225	388	305	338	907	924	4934
Lista	522	1268	895	412	225	524	577	933	555	805	513	551	8032
Solhomfjell	241	551	290										
Møsvatn	69	114	125	15	179	724	284	567	121	144	428	34	2804
Nordmoen	125	258	125										
Hurdal	132	306	196	125	215	195	178	282	289	0	401	1647	4239
Osen	24	257	108	93	517	260	173	473	169	299	143	292	2817
Valdalen	44	280	214	75	367	569	385	585	619	225	645	-	-
Ualand	383	583	468	144	333	202	295	537	536	324	568	296	4668
Kårvatn	149	49	781	166	66	170	163	140	717	260	93	24	2743
Namsvatn	830	183	503										
Øverbygd	209	37	326	36	74	41	209	183	72	142	94	106	1530
Karasjok	14	27	-	32	-	-	59	173	122	47	59	25	628
Svanvik	19	61	63	44	114	81	65	245	100	134	77	101	1104

Tabell A.2.12: Månedlig og årlig våtavsetning av nikkel på norske
bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÁR
Lista	31	33	27	9	18	31	87	100	25	26	30	32	463
Solhomfjell	7	40	23										
Masvatn	10	12	5	1	15	31	44	53	26	4	25	3	229
Valdalen	1	6	6	9	24	18	42	66	24	7	22	22	247
Ualand	24	36	38	10	18	16	22	34	26	18	13	22	277
Namsvatn	21	8	83										
Øverbygd	27	8	5	4	3	3	3	5	8	7	3	2	79
Svanvik	73	187	143	448	264	308	303	1018	1009	714	141	188	4796

Tabell A.2.13: Månedlig og årlig våtavsetning av arsen på norske
bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	33	147	71	15	7	26	15	51	52	84	28	44	590
Solhomfjell	0	0	0										
Møsvatn	1	2	6	1	2	24	7	13	3	2	3	2	66
Valdalen	0	3	1	1	6	3	2	7	11	4	2	7	46
Ualand	5	18	7	5	4	9	9	25	41	23	6	46	197
Namsvatn	23	4	8										
Øverbygd	6	2	6	2	1	0	5	3	4	17	2	1	50
Svanvik	3	26	16	48	49	20	20	147	80	35	26	21	497

Tabell A.2.14: Månedlig og årlig våtavsetning av kopper på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	49	312	102	28	58	77	75	120	69	108	74	88	1194
Solhomfjell	29	415	50										
Møsvatn	17	25	25	1	44	210	95	138	22	10	40	10	637
Valdalen	4	43	22	14	66	89	60	137	179	16	51	64	744
Ualand	34	90	59	26	32	39	42	79	84	40	62	50	637
Namsvatn	47	25	56										
Øverbygd	6	10	10	7	12	7	30	23	14	19	16	20	176
Svanvik	59	380	227	760	368	304	347	963	1163	804	293	334	6002

Tabell A.2.15: Månedlig og årlig våtavsetning av kobolt på norske
bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	2	5	6	2	1	4	4	6	3	4	2	3	43
Solhomfjell	1	2	3										
Møsvatn	1	0	0	0	1	5	2	2	1	0	3	0	15
Valdalen	0	0	0	0	1	1	2	4	1	0	1	1	12
Ualand	0	2	7	0	2	2	2	5	1	1	1	1	25
Namsvatn	1	0	2										
Øverbygd	1	0	0	0	1	1	1	0	1	1	0	1	7
Svanvik	2	7	5	15	9	11	11	34	31	21	5	5	156

Tabell A.2.16: Månedlig og årlig våtavsetning av krom på norske
bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{2}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Lista	6	18	13	8	5	10	28	32	13	19	18	15	189
Solhomfjell	2	13	28										
Møsvatn	1	3	5	1	4	10	7	8	7	4	6	3	59
Valdalen	1	6	2	2	11	16	11	15	18	7	9	14	112
Ualand	10	36	13	10	8	4	6	12	26	18	13	22	178
Namsvatn	21	8	17										
Øverbygd	12	4	5	4	3	2	3	5	8	7	3	2	59
Svanvik	1	3	2	4	5	9	7	16	14	10	7	3	81

Tabell A.2.17: Middelkonsentrasjoner av tungmetaller i nedbør på norske bakgrunnsstasjoner i 1976, august 1978 - juni 1979, 1980 (februar-desember) og 1981-1997.

Stasjon	År	Arlige middelkonsentrasjoner							
		Pb $\mu \mathrm{g} / \mathrm{l}$	Cd $\mu \mathrm{g} / \mathrm{l}$	$\begin{gathered} \mathrm{Zn} \\ \mu \mathrm{~g} / \mathrm{l} \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mu \mathrm{~g} / \mathrm{l} \end{gathered}$	As $\mu \mathrm{g} / \mathrm{l}$	Cu $\mu \mathrm{g} / \mathrm{l}$	$\begin{gathered} \hline \mathrm{Co} \\ \mu \mathrm{~g} / \mathrm{l} \end{gathered}$	Cr $\mu \mathrm{g} / \mathrm{l}$
Birkenes	1976	12,7	0,27	28,9					
	1978/79	10,8	0,27	17,9					
	1980	7,9	0,34	15,7					
	1981	7,4	0,24	6,2					
	1982	8,8	0,69	7,0					
	1983	5,4	0,25	6,6					
	1984	6,2	0,29	12,1					
	1985	4,1	0,09	9,4					
	1986	4,8	0,12	9,0					
	1987	3,5	0,12	9,2					
	1988	7,4	0,12	14,1					
	1989	5,4	0,11	11,4					
	1990	3,8	0,12	9,5					
	1991	3,6	0,06	7,0					
	1992	2,9	0,04	5,2					
	1993	3,1	0,06	6,5					
	1994	2,6	0,05	5,0					
	1995	2,2	0,05	6,0					
	1996	2,8	0,06	4,9					
	1997	1,7	0,03	4,2					
Lista	1994	2,7	0,05	7,8	0,3	0,2	1,0		0,2
	1995	2,3	0,06	8,6	0,4	0,4	1,1		0,8
	1996	3,0	0,07	8,6	0,4	0,4	-		0,3
	1997	7,5	0,05	6,6	0,4	0,5	1,0	0,04	0,2
Ualand	1994	2,0	0,04	4,0	0,2	0,1	0,5	0,02	0,1
	1995	1,7	0,03	3,3	0,2	0,1	0,3	0,01	0,1
	1996	1,3	0,03	2,5	0,2	0,1	0,9	0,01	0,2
	1997	1,3	0,02	2,6	0,2	0,1	0,4	0,01	0,1
Solhomfjell	1994	2,4	0,06	6,0	0,2	0,1	0,7	0,02	0,1
	1995	1,9	0,07	6,0	0,6	0,2	1,1	0,03	0,2
	1996	2,3	0,05	5,7	0,3	0,2	0,9	0,02	<0,2
	1997								
Møsvatn	1994	1,0	0,04	2,9	0,6	0,1	0,5	0,03	<0,1
	1995	0,9	0,03	2,8	0,3	0,1	0,9	0,01	0,1
	1996	1,0	0,02	4,5	0,4	0,1	1,0	0,02	0,1
Nordmoen	1987	4,6	0,10	8,4					
	1988	5,6	0,10	11,0					
	1989	4,6	0,08	7,3					
	1990	3,8	0,14	5,6					
	1991	2,6	0,06	4,3					
	1992	2,3	0,04	4,4					
	1993	1,8	0,04	3,5					
	1994	1,7	0,05	4,0					
	1995	2,0	0,04	5,2					
	1996	1,9	0,04	4,3					
	1997								
Osen	1988	4,7	0,31	12,7					
	1989	2,7	0,08	5,4					
	1990	2,7	0,09	5,6					
	1991	2,0	0,03	4,2					
	1992	1,6	0,05	5,5					
	1993	1,2	0,06	3,5					
	1994	1,4	0,05	5,9					
	1995	2,1	0,07	8,8					
	1996	1,5	0,03	4,4					
	1997	0,9	0,02	4,0					

Tabell A.2.17, forts.

Stasjon	Ar	Ârlige middelkonsentrasjoner							
		Pb $\mu \mathrm{g} / \mathrm{l}$	$\begin{gathered} \mathrm{Cd} \\ \mu \mathrm{~g} / \mathrm{I} \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \mu \mathrm{~g} / \mathrm{I} \end{gathered}$	Ni	As $\mu \mathrm{g} / \mathrm{l}$	Cu $\mu \mathrm{g} / \mathrm{I}$	Co $\mu \mathrm{g} / \mathrm{I}$	$\begin{gathered} \hline \mathrm{Cr} \\ \mu \mathrm{~g} / \end{gathered}$
Valdalen	1994	1,0	0,03	4,2	0,1	0,1	0,6	0,01	0,1
	1995	1,4	0,03	4,6	0,4	0,1	0,8	0,02	0,2
	1996	1,1	0,03	4,1	0,3	0,1	1,0	0,03	0,2
	1997	1,1	0,05	7,8	0,4	0,1	0,1	0,02	0,2
Kårvatn	1978/79	1,5	0,04	3,0					
	1980	1,4	0,06	4,2					
	1981	1,4	0,09	3,0					
	1982	1,5	0,10	3,1		.			
	1983	0,7	0,12	2,9					
	1984	1,3	0,07	3,6					
	1985	1,1	0,06	4,0					
	1986	1,4	0,01	3,2					
	1987	1,1	0,03	2,5					
	1988	0,9	0,06	4,2					
	1989	0,3	0,05	1,8					
	1990	0,2	0,06	1,0					
	1991	0,3	0,01	1,0					
	1992	0,2	<0.01	0,8					
	1993	0,2	0,01	0,6					
	1994	0,4	0,02	1,2					
	1995	0,2	0,01	1,2					
	1996	0,5	0,01	1,4					
	1997	0,7	0,01	1,6					
Namsvatn	1994	0,5	0,03	2,3	0,2	0,1	0,4	0,02	0,1
	1995	0,5	0,01	2,3	0,3	0,1	0,2	0,01	0,1
	1996	0,5	0,02	3,0	0,1	0,1	0,5	0,01	<0,2
	1997								
Øverbygd	1995	0,4	0,01	2,3	0,4	0,1	0,5	0,02	0,1
	1996	0,5	0,03	3,5	0,4	0,1	1,3	0,02	0,3
	1997	0,5	0,01	2,7	0,1	0,1	0,3	0,01	0,1
Jergul	1978/79	3,5	0,22	7,8					
	1980	2,6	0,08	4,5					
	1981	1,8	0,05	3,5					
	1982	2,3	0,11	3,1					
	1983	1,5	0,07	3,6					
	1984	2,2	0,09	9,8					
	1985	2,0	0,08	5,0					
	1986	2,0	0,03	5,2					
	1987	1,3	0,07	4,6					
	1988	1,3	0,07	5,1					
	1989	1,3	0,05	3,3					
	1990	0,7	0,16	2,7					
	1991	0,7	0,02	2,2					
	1992	0,5	0,05	1,6					
	1993	0,5	0,05	2,4					
	1994	0,5	0,03	4,1					
	1995	0,8	0,04	3,5					
	1996	0,5	0,02	3,3					
Karasjok	1997	0,6	0,02	3,1					
Svanvik	1987	2,00*	0,14*	6,0*	19,9*	2,4*	21,8*		
	1988	3,7	0,10	7,4	12,8	1,6	14,6		
	1989	1.4	0,14	4,6	15,5	1,3	14,4		
	1990	1,6	0,14	6,2	11,4	1,8	13,6	0,4	0,5
	1991	1,3	0,07	3,4	9,3	1,1	10,4	0,3	0,4
	1992	1,1	0,11	2,8	8,0	1,1	11,9	0,3	0,5
	1993	1,1	0,12	3,0	10,9	1,2	13,4	0,4	0,6
	1994	1,4	0,08	5,0	13,4	1,4	12,5	0,4	0,4
	1995	1,7	0,11	5,4	17,4	1,8	17,4	0,6	0,4
	1996	0,9	0,06	3,3	17,5	1,1	18,7	0,6	0,4
	1997	1,9	0,11	3,8	17,3	1,8	21,4	0,6	0,3

* Målingene startet 16. mars 1987.

Tabell A.3.1: Månedlige og årlige middelkonsentrasjoner av svoveldioksid i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g}$ S/m3.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	0,31	0,34	0,21	0,18	0,22	0,30	0,22	0,36	0,11	0,07	0,21	0,20	0,22
Søgne	0,86	0,57	0,39	0,43	0,46	0,47	0,50	0,31	0,13	0,20	0,54	0,54	0,47
Skreådalen	0,22	0,19	0,17	0,09	0,11	0,20	0,08	0,15	0,05	0,03	0,18	0,18	0,14
Prestebakke	0,46	0,42	0,26	0,19	0,20	0,27	0,13	0,35	0,17	0,15	0,19	0,28	0,26
Hurdal	0,26	0,40	0,17	1,05	0,08	0,13	0,08	0,20	0,10	0,06	0,51	0,17	0,18
Gulsvik	0,15	0,32	0,13	0,09	0,05	0,12	0,07	0,11	0,07	0,03	0,07	0,09	0,11
Osen	0,13	0,24	0,09	0,04	0,03	0,08	0,06	0,10	0,04	0,02	0,08	0,13	0,09
Kårvatn	0,04	0,20	0,03	0,02	0,02	0,07	0,04	0,04	0,02	0,02	0,03	0,12	0,05
Tustervatn	0,04	0,30	0,11	0,04	0,05	0,09	0,06	0,04	0,02	0,03	0,17	0,12	0,09
Jergul	0,13	0,89	0,28										
Karasjok	0,10	1,09	0,44	0,86	0,52	0,32	0,68	0,03	0,07	0,13	1,17	0,29	0,48
Svanvik	2,50	6,88	10,34	5,62	4,81	5,24	9,12	3,42	2,18	1,88	4,03	2,34	4,85
Zeppelinfj.	0,34	0,34	0,19	0,10	0,03	0,14	0,05	0,10	0,05	0,08	0,08	0,06	0,13

Tabell A.3.2: Månedlige og årlige middelkonsentrasjoner av sulfat i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g}$ S/m3.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,46	0,43	0,49	0,33	0,43	0,76	0,61	1,16	0,41	0,23	0,69	0,44	0,53
Søgne	0,61	0,69	0,99	0,58	0,53	0,97	0,78	0,36	0,50	0,32	0,55	0,63	0,63
Skreádalen	0,27	0,33	0,43	0,37	0,33	0,72	0,52	0,93	0,30	0,16	0,52	0,25	0,42
Prestebakke	0,58	0,50	0,54	0,36	0,48	0,73	0,60	0,86	0,41	0,23	0,75	0,44	0,54
Hurdal	0,28	0,37	0,37	0,37	0,31	0,47	0,46	0,78	0,51	0,07	0,49	0,36	0,41
Gulsvik	0,14	0,26	0,34	0,25	0,25	0,44	0,37	0,76	0,24	0,06	0,36	0,22	0,31
Osen	0,18	0,26	0,30	0,21	0,21	0,39	0,33	0,70	0,28	0,07	0,40	0,26	0,30
Kárvatn	0,12	0,16	0,18	0,20	0,17	0,36	0,37	0,63	0,14	0,06	0,16	0,07	0,22
Tustervatn	0,17	0,26	0,33	0,18	0,22	0,42	0,31	0,59	0,23	0,12	0,23	0,19	0,27
Jergul	0,16	0,37	0,43										
Karasjok	0,15	0,37	0,51	0,54	0,34	0,29	0,33	0,33	0,20	0,20	0,36	0,24	0,32
Svanvik	0,24	0,50	0,77	0,72	0,46	0,53	0,69	0,44	0,34	0,30	0,56	0,30	0,49
Zeppelinfj	0,21	0,38	0,37	0,31	0,19	0,21	0,07	0,22	0,05	0,08	0,10	0,09	0,19

Tabell A.3.3: Månedlige og årlige middelkonsentrasjoner av nitrogendioksid i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	1,41	0,79	0,57	0,41	0,33	0,45	0,47	0,77	0,39	0,44	1,06	1,20	0,69
Søgne	1,95	1,19	0,89	0,78	0,67	0,84	0,89	1,03	0,61	0,91	1,47	2,02	1,11
Skreådalen	0,92	0,55	0,44	0,29	0,26	0,44	0,59	0,66	0,26	0,33	0,68	0,89	0,53
Nordmoen	5,74	2,44	1,85	1,31	0,99	0,90	0,85	1,33	1,10	1,88	2,40	3,19	2,01
Hurdal	2,64	1,36	1,02	0,67	0,54	0,63	0,56	0,63	0,84	0,84	1,14	2,28	1,10
Osen	1,12	0,53	0,48	0,31	0,50	0,26	0,20	0,27	0,24	0,36	0,48	0,95	0,48
Kárvatn	0,15	0,21	0,17	0,21	0,11	0,28	0,36	0,44	0,20	0,21	0,21	0,48	0,25
Tustervatn	0,16	0,17	0,16	0,19	0,09	0,23	0,27	0,15	0,12	0,16	0,18	0,22	0,18
Jergul	0,07	0,19	0,13										
Karasjok	0,11	0,20	0,17	0,21	0,10	0,13	0,33	0,22	0,19	0,29	0,26	0,15	0,20
Svanvik	1,19	0,91	0,51	0,48	0,24	0,28	0,55	0,64	0,37	0,44	0,82	0,75	0,59

Tabell A.3.4: Månedlige og årlige middelkonsentrasjoner av sum salpetersyre og nitrat i luft på norske bakgrunnsstasjoner, 1997.
Enhet: μg N/m³.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,29	0,22	0,24	0,17	0,25	0,28	0,20	0,36	0,16	0,12	0,36	0,20	0,24
Søgne	0,52	0,44	0,69	0,41	0,41	0,44	0,34	0,21	0,22	0,23	0,46	0,25	0,38
Skreådalen	0,18	0,10	0,21	0,18	0,18	0,27	0,18	0,30	0,19	0,08	0,20	0,12	0,18
Prestebakke	0,41	0,28	0,31	0,20	0,23	0,20	0,16	0,29	0,22	0,12	0,30	0,18	0,24
Hurdal	0,35	0,23	0,19	0,15	0,19	0,29	0,15	0,29	0,25	0,09	0,19	0,25	0,23
Gulsvik	0,22	0,13	0,15	0,10	0,10	0,17	0,12	0,18	0,09	0,05	0,21	$0,31 \mid$	0,15
Osen	0,11	0,09	0,10	0,09	0,06	0,12	0,06	0,17	0,09	0,04	0,13	0,09	0,10
Kårvatn	0,08	0,05	0,04	0,07	0,04	0,13	0,08	0,16	0,05	0,02	0,07	0,07	0,07
Tustervatn	0,07	0,08	0,05	0,07	0,05	0,11	0,07	0,12	0,05	0,10	0,06	0,05	0,07
Jergul	0,06	0,08	0,04										
Karasjok	0,05	0,08	0,05	0,08	0,03	0,07	0,04	0,10	0,12	0,04	0,09	0,07	0,07
Svanvik	0,07	0,11	0,07	0,08	0,05	0,10	0,07	0,09	0,06	0,04	0,07	0,06	0,07
Zeppelinfj.	0,04	0,06	0,08	0,08	0,03	0,06	0,04	0,10	0,09	0,12	0,06	0,09	0,07

Tabell A.3.5: Månedlige og årlige middelkonsentrasjoner av sum ammonium og ammoniakk i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{N} / \mathrm{m}^{3}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	ÅR
Birkenes	0,36	0,25	0,46	0,33	0,39	0,64	0,57	1,41	0,35	1,74	0,80	0,36	0,54
Søgne	0,76	0,71	1,16	0,85	0,62	1,15	1,40	1,08	0,83	1,22	0,98	0,45	0,94
Skreảdalen	1,18	0,72	1,44	1,61	1,95	1,83	1,62	2,09	0,91	0,94	1,06	1,55	1,41
Prestebakke	0,57	0,41	0,61	0,36	0,52	0,75	0,70	1,10	0,44	0,25	0,82	0,47	0,58
Hurdal	0,38	0,45	0,38	0,48	0,44	0,75	0,64	1,07	0,64	0,20	0,46	0,40	0,53
Osen	0,17	0,20	0,29	0,28	0,28	0,43	0,42	0,73	0,32	0,46	0,32	0,24	0,35
Kårvatn	0,15	0,11	0,18	0,19	0,31	1,10	1,47	1,44	0,46	0,19	0,23	0,17	0,50
Tustervatn	0,95	0,44	1,28	1,61	1,43	3,27	1,49	0,93	0,62	0,83	0,42	0,45	1,15
Jergul	0,07	0,16	0,18										
Karasjok	0,07	0,14	0,19	0,16	0,13	0,15	0,20	0,20	0,17	0,11	0,25	0,14	0,16
Svanvik	0,53	0,48	0,55	0,49	0,57	0,76	0,49	0,92	0,77	0,46	0,81	0,73	0,63
Zeppelinfj.	0,08	0,13	0,17	0,12	0,17	0,18	0,10	0,36	0,07	0,06	0,07	0,06	0,13

Tabell A.3.6: Månedlige og årlige middelkonsentrasjoner av magnesium i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,06	0,16	0,10	0,05	0,05	0,04	0,02	0,04	0,05	0,03	0,04	0,02	0,05
Hurdal	0,03	0,07	0,04	0,02	0,03	0,03	0,01	0,03	0,02	0,01	0,00	0,00	0,03

Tabell A.3.7: Månedlige og årlige middelkonsentrasjoner av kalsium i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

STASJON	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,04	0,07	0,05	0,04	0,04	0,07	0,05	0,10	0,03	0,01	0,02	0,02	0,04
Hurdal	0,03	0,05	0,09	0,03	0,05	0,09	0,06	0,15	0,04	0,04	0,02	0,01	0,06

Tabell A.3.8: Månedlige og årlige middelkonsentrasjoner av kalium i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,08	0,06	0,05	0,03	0,04	0,06	0,04	0,09	0,05	0,02	0,05	0,03	0,05
Hurdal	0,06	0,05	0,04	0,03	0,03	0,04	0,04	0,14	0,08	0,04	0,05	0,06	0,05

Tabell A.3.9: Månedlige og årlige middelkonsentrasjoner av klorid i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,45	1,73	1,09	0,46	0,24	0,21	0,08	0,14	0,58	0,28	0,27	0,10	0,46
Hurdal	0,22	0,43	0,24	0,16	0,08	0,04	0,02	0,02	0,02	0,08	0,03	0,01	0,12

Tabell A.3.10: Månedlige og årlige middelkonsentrasjoner av natrium i luft på norske bakgrunnsstasjoner, 1997.
Enhet: $\mu \mathrm{g} / \mathrm{m}^{3}$.

Stasjon	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DES	AR
Birkenes	0,44	1,30	0,75	0,37	0,42	0,33	0,18	0,27	0,48	0,23	0,30	0,15	0,43
Hurdal	0,27	0,45	0,31	0,18	0,18	0,14	0,07	0,14	0,18	0,08	0,04	0,06	0,19

Tabell A.3.11: Årlige middelkonsentrasjoner av svovel- og nitrogenkomponenter i luft, 1973-1997 på norske bakgrunnsstasjoner. Enheter: $\mu \mathrm{g}$ S/m³ og $\mu \mathrm{g} / \mathrm{m}^{3}$.

* 1 måned mangler
** 2 eller flere måneder mangler

Stasjon	År	Ârlige middelkonsentrasjoner i luft ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		$\mathrm{SO}_{2}-\mathrm{S}$	SO_{4}-S	$\mathrm{NO}_{2}-\mathrm{N}$	$\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}\right)-\mathrm{N}$	$\left(\mathrm{NH}_{4}+\mathrm{NH}_{3}\right)-\mathrm{N}$
Birkenes	1973		0,8			
	1974		1,1			
	1975		1,1			
	1976		1,3			
	1977		0,9			
	1978	1,7	1,1			
	1979	1,1	1,3			
	1980	1,4	1,4			
	1981	0,8	1,0			
	1982	1,0	1,1			
	1983	0,5	0,9			
	1984	0,7	1,3	1,1*		
	1985	0,7	0,9	0,8		
	1986	0,7	0,8	1.1	0,4	0,7
	1987	0,7	0,8	1,1	0,3	0,7
	1988	0,6	0,8	1,3	0,3	0,6
	1989	0,5	0,7	1,1	0,3	0,6
	1990	0,5	0,8	1,0	0,3	0,8
	1991	0,5	0,9	0,9	0,3	0,8
	1992	0,40	0,65	0,69	0,24	0,53
	1993	0,40	0,59	0,59	0,23	0,55
	1994	0,40	0,65	0,66	0,28	0,63
	1995	0,31	0,58	0,68	0,30	0,54
	1996	0,40	0,66	0,68	0,29	0,57
	1997	0,22	0,53	0,69	0,24	0,54
Søgne	1989	1,0	1,0	3,1	0,5	1,5
	1990	0,9	1,0	2,7	0,5	1,8
	1991	1,1**	1,2**	2,8**	0,5**	1,7**
	1992	0,62*	0,87*	1,54*	0,42*	0,94*
	1993	0,68	0,81	1,80	0,40	0,88
	1994	0,77	0,77	1,62	0,44	0,89
	1995	0,51	0,72	1,19	0,43	0,98
	1996	0,83	0,85	1,33	0,46	0,95
	1997	0,47	0,63	1,11	0,38	0,94
Skreådalen	1975		1,0			
	1976		1,1			
	1977		0,8			
	1978	1,6	1,0			
	1979	1,0	0,9			
	1980	1,3	1,2			
	1981	0,7	0,9			
	1982	0,8	0,9			
	1983	0,5	0,8			
	1984	0,8	1,0	0,7*		
	1985	0,6	0,8	0,5		
	1986	0,8	0,8	0,7		
	1987	0,7	0,7	0,8		
	1988	0,7	0,7	0,8		
	1989	0,4	0,6	0,6	0,3	1,7
	1990	0,5	0,7	0,6	0,2	2,1
	1991	0,5	0,7	0,6	0,2	1,4
	1992	0,32	0,56	0,41	0,19	1,26
	1993	0,39	0,53	0,45	0,21	1,38
	1994	0,32	0,57	0,63	0,24	1,44
	1995	0,22	0,43	0,46	0,22	1,45
	1996	0,30	0,54	0,42	0,25	1,66
	1997	0,14	0,42	0,53	0,18	1,41

Tabell A.3.11, forts.

Stasjon	Ár	Arlige middelkonsentrasjoner i luft ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		$\mathrm{SO}_{2}-\mathrm{S}$	SO_{4}-S	$\mathrm{NO}_{2}-\mathrm{N}$	$\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}\right)-\mathrm{N}$	$\left(\mathrm{NH}_{4}+\mathrm{NH}_{3}\right)-\mathrm{N}$
Prestebakke	1986	1,1	1,2	1,5	0,4	0,8
	1987	1,3	1,1	1,8	0,4	0,9
	1988	1,0	1,1	1,7**	0,3**	0,7**
	1989	0,7	0,9	1,5	0,3	0,8
	1990	0,5	0,8	1,3	0,3	0,7
	1991	0,5	0,8	1,4	0,3	0,7
	1992	0,48	0,70	1,02	0,28	0,65
	1993	0,50	0,75	1,20	0,28	0,68
	1994	0,48	0,73	1,03	0,29	0,68
	1995	0,39	0,66		0,31	0,67
	1996	0,35	0,76		0,32	0,81
	1997	0,26	0,54		0,24	0,58
Nordmoen	1986	0,5**	0,9**	2,0**	0,3**	0,6**
	1987	0,6	0,8	3,3	0,4	0,7
	1988	0,7	0,9	3,0	0,3	0,6
	1989	0,4	0,8	2,6	0,3	0,7
	1990	0,4	0,7	2,5	0,3	0,7
	1991	0,3	0,8	2,6	0,2	0,6
	1992	0,21	0,56	2,43	0,21	0,53
	1993	0,25	0,59	2,09	0,21	0,54
	1994	0,23	0,58	2,56	0,28	0,62*
	1995	0,19	0,54	2,25	0,27	0,54
	1996	0,16	0,58	$2,48$	0,28	0,6
Gulsvik	1988	0,5	0,7			
	1989	0,2	0,5			
	1990	0,2	0,5		0,2	
	1991	0,3	0,5			
	1992	0,19	0,42		0,15	
	1993	0,22	0,40		0,15	
	1994	0,19	0,42		0,20	
	1995	0,20	0,38		0,17	
	1996	0,13	0,44		0,19	
	1997	0,11	0,31		0,15	
Osen	1988	0,7	0,7			
	1989	0,4	0,5	0,9	0,2	0,4
	1990	0,2	0,5	0,6	0,1	0,4
	1991	0,3	0,5	0,6	0,1	0,4
	1992	0,17	0,37	0,50	0,11	0,30
	1993	0,22	0,38	0,53	0,11	0,28
	1994	0,19	0,42	0,44	0,14	0,34
	1995	0,19	0,38	0,41	0,15	0,31
	1996	0,13	0,40	0,40	0,14	0,37
	1997	0,09	0,30	0,48	0,10	0,35
Kărvatn	1979	0,5	0,5			
	1980	0,5	0,5			
	1981	0,5	0,5			
	1982	0,3	0,4			
	1983	0,2	0,4			
	1984	0,4	0,5			
	1985	0,4	0,5			
	1986	0,4	0,4			
	1987	0,3	0,4			
	1988	0,3	0,4	0,6	0,1	0,4
	1989	0,2	0,3	0,3	0,1	0,4
	1990	0,1	0,3	0,4	0,1	0,4
	1991	0,1	0,3	0,3	0,1	0,4
	1992	0,12	0,30	0,19	0,06	0,37
	1993	0,15	0,30	0,16	0,07	0,38
	1994	0,12	0,30	0,22	0,10	0,48
	1995	0,16	0,22	0,26	0,10	0,36
	1996	0,08	0,27	0,24	0,08	0,46
	1997	0,05	0,22	0,25	0,07	0,50

Tabell A.3.11, forts.

Tabell A.3.11, forts.

Stasjon	$\hat{A} r$	Árlige middelkonsentrasjoner i luft ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		$\mathrm{SO}_{2}-\mathrm{S}$	SO_{4}-S	$\mathrm{NO}_{2}-\mathrm{N}$	$\left(\mathrm{HNO}_{3}+\mathrm{NO}_{3}\right)-\mathrm{N}$	$\left(\mathrm{NH}_{4}+\mathrm{NH}_{3}\right)-\mathrm{N}$
Zeppelin	1990	0,21	0,22		0,04	0,09
	1991	0,24	0,19	0,02**	0,05	0,09
	1992	0,19	0,19	0,02	0,04	0,08
	1993	0,17	0,20	0,03	0,06	0,09
	1994	0,16	0,15	0,05	0,06	0,09
	1995	0,15	0,17		0,08	0,10
	1996	0,10	0,15		0,08	0,11
	1997	0,13	0,21		0,07	0,13

Vedlegg A. 4 - Analyseresultater

Tabell A.4.1 Organiske forbindelser luft i Lista (O-398)
Tabell A.4.2 Organiske forbindelser nedbør i Lista (O-397)
Tabell A.4.3 Organiske forbindelser luft i Ny -Ålesund (O-396)
Tabell A.4.4 Organiske forbindelser luft i Ny - \AA lesund ($\mathrm{O}-463$)
Tabell A.4.5 Organiske forbindelser luft i Ny-Ålesund (O-442)
Tabell A.4.6 Tungmetaller og sporelementer luft i Ny -Ålesund (U-161-98)
Tabell A.4.7 Kvikksølv i luft i Ny-Ålesund

$$
\because^{\circ}
$$

Akkreditert etter EN 45001
Norsk institutt for luftforskning Postboks 100, N-2007 Kjeller

Målerapport nr. O-398

Oppdragsgiver: Statens forurensning (SFT) Postboks 8100 Dep
0032 OSLO
Prosjekt nr.:
O-90006

Prøvetaking:

Sted:
Lista fyr
Ansvar: NILU
Kommentar:
Prøveinformasjon: POP-analyseresultater i 48 uteluftprøver i 1997

NILU provenr.	Kundens provemerking	Prøvetype	Proven mottatt	Provene analysert
97/9	2-3/1-97	Luft	06.01.97	08.09.97
97/61	9-10/1-97	"	14.01 .97	08.09.97
97/69	16-17/1-97	"	20.01 .97	08.09 .97
97/97	23-24/1-97	"	27.01.97	08.09.97
97/140	30-31/1-97	"	04.02.97	08.09.97
97/165	6-7/2-97	"	11.02.97	08.09 .97
97/181	13-14/2-97	"	18.02 .97	08.09.97
97/198	20-21/2-97	"	24.02.97	08.09 .97
97/227	27-28/2-97		03.03.97	08.09.97
97/272	6-7/3-97	"	14.03.97	08.09 .97
97/278	13-14/3-97	"	18.03.97	08.09.97
97/300	20-21/3-97	"	25.03.97	08.09.97
97/341	27-28/3-97	"	07.04.97	08.09.97
97/342	3-4/4-97	"	07.04.97	01.12 .97
97/365	10-11/4-97	"	14.04 .97	05.09.97
97/370	17-18/4-97	"	22.04 .97	01.12 .97
97/384	24-25/4-97	"	27.04.97	05.09.97
97/419	1-2/5-97	"	05.05.97	05.09.97
97/484	8-9/5-97	"	14.05 .97	05.09.97
97/541	22-23/5-97	"	27.05 .97	01.12 .97
97/548	29-30/5-97	"	02.06.97	01.12 .97
97/589	5-6/6-97	"	10.06.97	01.12 .97
97/600	12-13/6-97	"	16.06.97	01.12 .97
97/617	19-20/6-97	"	24.06 .97	08.05 .98
97/632	26-27/6-97	"	01.07 .97	01.12 .97
97/651	3-4/7-97	"	0907.97	02.12 .97
97/657	10-11/7-97	"	15.07.97	01.12 .97
97/666	17-18/7-97	"	22.07.97	01.12 .97
97/677	24-25/7-97	"	28.07,97	01.12 .97
97/698	31/7-1/8-97	"	04.08.97	01.12 .97
97/711	7-8/8-97	"	11.08 .97	01.12 .97
$97 / 739$	14-15/8-97	"	19.08 .97	02.12 .97
97/750	21-22/8-97	"	25.08 .97	01.12 .97
97/796	4-5/9-97	"	08.09.97	02.12.97

NILU prøvenr.	Kundens prøvemerking	Prøvetype	Prøven mottatt	Prøven analysert
$97 / 823$	$11-12 / 9-97$	Luft	16.09 .97	17.04 .98
$97 / 847$	$18-19 / 9-97$	$"$	22.09 .97	17.04 .98
$97 / 872$	$2-3 / 10-97$	$"$	07.10 .97	17.04 .98
$98 / 889$	$9-10 / 10-97$	$"$	14.10 .97	17.04 .98
$97 / 896$	$16-17 / 10-97$	$"$	22.10 .97	17.04 .98
$97 / 906$	$23-24 / 10-97$	$"$	29.01 .98	17.04 .98
$97 / 945$	$30-31 / 10-97$	$"$	03.11 .97	17.04 .98
$97 / 1045$	$13-14 / 11-97$	$"$	17.11 .97	17.04 .98
$97 / 1060$	$20-21 / 11-97$	$"$	24.11 .97	17.04 .98
$97 / 1094$	$27-28 / 11-97$	$"$	02.12 .97	17.04 .98
$97 / 1108$	$4-5 / 12-97$	$"$	10.12 .97	10.04 .98
$97 / 1119$	$11-12 / 12-97$	$"$	15.12 .97	17.04 .98
$97 / 1127$	$18-19 / 12-97$	$"$	26.01 .98	17.04 .98
$98 / 1$	$25-26 / 12-97$	$"$	26.01 .98	08.05 .98

Analyser:

Utført av: Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER

Målemetode: NILU-O-2 ("Bestemmelse av tungflyktige persistente forbindelser pesticider og PCB'er")
Måleusikkerhet: $\pm 20 \%$
Kommentarer: NILU 97/181, 97/632 og 97/1119 er ikke akkrediterte på grunn av lav gjenvinning.

Godkjenning: Kjeller, 8. mai 1998

Ole-Anders Braathen
Leder, Kjemisk analyse
Vedlegg: $\quad 48$ POP-analyseresultater: 1 side
Målerapporten og vedleggene omfatter totalt 3 sider
Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.
Vedlegg til målerapport: O-398 Prosjekt: OSPARCOM-97
Prøvetakingssted: Lista

NILU prøvenr.	97/9	97/61	97/69	97/97	97/140	97/165	97/181	97/198	97/227	97/272
Uke	1	2	3	4	5	6	7	8	9	10
Dato	2-3/1-97	9-10/1-1997	16-17/1-97	23-24/1-97	30-31/1-97	6-7/2-97	13-14/2-97	20-21/2-97	27-28/2-97	6-7/3-97
HCB	95,1	64,2	110	71,1	73,8	78,5	85,0	102	82,6	76,7
$\mathrm{a}-\mathrm{HCH}$	45,5	30,6	34,7	29,9	36,8	42,1	51,7	45,7	23,5	33,1
g-HCH	9,67	7,37	54,1	15,4	14,1	85,9	9,98 (g)	17,2	33,7	15,1
NILU prøvenr.	97/278	97/300	97/341	97/342	97/365	97/370	97/384	97/419	97/484	
Uke	11	12	13	14	15	16	17	18	19	20
Dato	13-14/3-97	20-21/3-97	27-28/3-97	3-4/4-97	10-11/4-97	17-18/4-97	24-25/4-97	1-2/5-97	8-9/5-97	-
HCB	82,0	76,8	74,6	77,6	78,4	77,3	82,1	85,1	94,0	
a-HCH	33,2	38,4	29,8	42,1	37,8	36,8	44,1	36,7	49,6	
$\mathrm{g}-\mathrm{HCH}$	54,3	18,7	17,8	15,4	11,8	32,6	33,6	75,8	167	
NILU prøvenr.	97/541	97/548	$97 / 589$	97/600	$97 / 617$	97/632	97/651	97/657	97/666	$97 / 677$
Uke	21	22	23	24	25	26	27	28	29.	30
Dato	22-23/5-97	29-30/5-97	5-6/6-97	12-13/6-97	19-20/6-97	26-27/6-97	3-4/7-97	10-11/7-97	17-18/7-97	24-25/7-97
HCB	82,2	79,8	80,0	134	85,1	79,4 (g)	88,9	70,3	78,9	93,8
$\mathrm{a}-\mathrm{HCH}$	51,3	40,4	60,0	80,2	45,4	51,5 (g)	51,6	58,7	72,7	102
g-HCH	43,5	50,4	47,9	312	86,8	58,4 (g)	255	70,7	56,7	95,3
NILU prøvenr.	97/698	97/711	97/739	97/750		97/796	97/823	97/847		97/872
Uke	31	32	33	34	35	36	37	38	39	40
Dato	31/7-1/8-97	7-8/8-97	14-15/8-97	21-22/8-97	-	4-5/9-97	11-12/9-97	18-19/9-97	-	2-3/10-97
HCB	69,4	68,8	70,8	101		80,3	85,8	95,2		82,1
$\mathrm{a}-\mathrm{HCH}$	56,1	84,7	86,6	81,1		58,2	44,2	47,9		31,0
g- HCH	49,0	61,4	94,6	102		151	112	15,1		14,8
NILU prøvenr.	97/889	97/896	97/906	97/945		97/1045	97/1060	97/1094	97/1108	97/1119
Uke	41	42	43	44	45	46	47	48	49	50
Dato	9-10/10-97	16-17/10-97	23-24/10-97	30-31/10-97	-	13-14/11-97	20-21/11-97	27-28/11-97	4-5/12-97	11-12/12-97
HCB	114	126	102	176		153	147	101	94,2	125
$\mathrm{a}-\mathrm{HCH}$	43,7	43,3	45,8	55,7		47,1	69,4	61,3	50,1	38,6
$\mathrm{g}-\mathrm{HCH}$	62,4	31,1	13,2	87,7		86,8	57,6	41,3	52,4	47,1
NILU prøvenr.	98/1	<: Lavere enn påvisningsgrensen ved signal:støy 3:1 (i): Isotopforhold avviker mer enn 20% fra teoretisk verdi. Dette skyldes mulig interferanse og/eller instrumentstøy. (g): Gjenvinning av internstandard oppfyller ikke NILUs krav (b): Mindre enn 10 ganger blindverdi.								
Uke	52									
Dato	25-26/12-97									
HCB	110									
a-HCH	35,8									
$\mathrm{g}-\mathrm{HCH}$	34,7									

Akkreditert etter EN 45001
Norsk institutt for luftforskning Postboks 100, N-2007 Kjeller

Målerapport nr. O-397

Oppdragsgiver: Statens forurensning (SFT)
Postboks 8100 Dep
0032 OSLO
Prosjekt nr.: O-90006

Prøvetaking:

Sted:
Ansvar:
Lista fyr
NILU
Kommentar:
Prøveinformasjon: POP-analyseresultater i 51 nedbørprøver i 1997

NILU prøvenr.	Kundens pravemerking	Provetype	Proven mottatt	Prøvene analysert
97/64	6-12/1-97	Nedbør	15.01.97	16.06.-08.09.97
97/65	12-12/1-98	"	${ }^{1}$	"
97/73	13-19/1-97	"	23.01 .97	"
97/108	20-27/1-97	"	29.01 .97	"
97/166	3-8/2-97	"	11.02 .97	17.06.-08.09.97
97/171	8-10/2-97	"	14.02 .97	a
97/172	10-11/2-97	"	"	"
97/182	11-14/2-97	"	18.02 .97	"
97/199	14-19/2-97		24.02.97	19.06.-05.09.97
97/200	19-20/2-97	"	"	"
97/217	20-22/2-97	"	27.02.97	20.06.-05.09.97
97/236	22-1/3-97	"	04.04.97	23.06.-18.12.97
97/237	1-2/3-97	"	05.03.97	20.06.-18.12.97
9/335	24-27/3-97	"	04.04.97	23.06.-18.12.97
97/336	27-31/3-97	"	04.04.97	26.06-18.12.97
97/369	7-14/4-97	"	18.04.97	18.07.-18.12.97
97/385	21-24/4-97	"	27.04.97	
97/401	24-28/4-97	"	29.04 .97	"
97/485	1-10/5-97	"	14.05 .97	23.07.-18.12.97
97/565	26-1/6-97	"	04.06.97	18.97-18.12.97
97/613	9-12/6-97	${ }^{\prime}$	18.06 .97	23.07.-18.12.97
97/618	16-21/6-97	"	24.06.97	
97/619	21-23/6-97	"	25.06 .97	"
97/661	14-17/7-97	"	21.07 .97	06.08.-18.12.97
97/754	22-23/8-97		26.08 .97	24.02.-17.04.98
97/755	18-22/8-97	"	28.08.97	07.10.-02.12.97
97/760	25-28/8-97	"	01.09 .97	*
97/797	3-4/9-97	"	08.09.97	"
97/798	28/8-3/9-97	"	09.09.97	"
97/799	4-7/9-97	"	10.09 .97	24.02.-17.04.98
97/824	8-13/9-97	"	16.09.97	30.01.-17.04.98
97/841	13-14/9-97	"	18.09 .97	24.02.-17.04.98
97/842	15-16/9-97	"	19.09 .97	30.01.-17.04.98
97/843	16-16/9.97	"	19.09 .97	24.02.-17.04.98
97/879	4-5/10-97	"	08.10.97	30.01.-17.04.98

NILU prøvenr.	Kundens prøvemerking	Prøvetype	Prøven mottatt	Prøven analysert
$97 / 880$	$5-7 / 10-97$	Nedbør	09.10 .97	$02.03 .-17.04 .98$
$97 / 898$	$7-14 / 10-97$	$"$	23.10 .97	$30.01 .-17.04 .98$
$97 / 899$	$14-17 / 10-97$	$"$	$"$	$02.03 .-17.04 .98$
$97 / / 901$	$17-20 / 10-97$	$"$	$"$	$12.02 .-17.04 .98$
$97 / 929$	$20-27 / 10-97$	$"$	29.10 .97	$02.03 .-17.04 .98$
$97 / 954$	$27-1 / 11-97$	$"$	10.11 .97	$"$
$97 / 1000$	$3-6 / 11-97$		11.11 .97	$03.02 .-17.04 .98$
$97 / 1040$	$6-9 / 11-97$	$"$	14.11 .97	$03.02 .-17.04 .98$
$97 / 1046$	$9-14 / 11-97$	$"$	17.11 .97	$"$
$97 / 1056$	$14-15 / 11-97$	$"$	20.11 .97	$19.02 .-17.04 .98$
$97 / 1107$	$1-6 / 12-97$	$"$	10.12 .97	$02.03 .-17.04 .98$
$97 / 1125$	$8-9 / 12-97$	$"$	23.12 .97	$19.02 .-17.04 .98$
971126	$9-10 / 12-97$	$"$	$"$	$"$
$98 / 6$	$22-25 / 12-97$	$"$	05.01 .98	$12.02 .-17.04 .98$
$98 / 7$	$25-25 / 12-97$	$"$	$"$	$"$
$98 / 8$	$26-29 / 12-97$	$"$	$"$	

Analyser:

Utført av: Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
Målemetode: NLLU-O-2 ("Bestemmelse av tungflyktige persistente forbindelser pesticider og PCB'er")
Måleusikkerhet: $\pm 20 \%$
Kommentarer: NILU 97/200, $97 / 385$ og $97 / 401$ og 97/754 er ikke akkrediterte på grunn av lav gjenvinning.

Godkjenning: Kjeller, 11. mai 1998
Qe-Anders Braathen

Ole-Anders Braathen
Leder, Kjemisk analyse
Vedlegg:
51 POP-analyseresultater: 1 side
Målerapporten og vedleggene omfatter totalt 3 sider
Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.
 P 008

Målerapport nr. O-396

Oppdragsgiver: Statens forurensning (SFT)
Postboks 8100 Dep
0032 OSLO
Prosjekt nr.: O-93062
Prøvetaking:
Sted: Zeppelinfjellet, Ny-Ålesund
Ansvar: NILU/NP
Kommentar:
Prøveinformasjon: Det er målt klordaner i 52 uteluftprøver i 1997

NILU provenr.	Kundens provemerking	Provetype	Prøven mottatt	Prøven analysert
97/47	1-3/1-97	Luft	02.07.97	17.12.97
97/176	8-10/1-97	"	07.07.97	"
97/177	15-17/1-97	"	"	"
97/178	22-24/1-97	"	02.07.97	"
97/179	29-31/1-97	"	"	"
97/293	5-7/2-97	"	07.07 .97	"
97/294	12-14/2-97	"	"	"
97/295	19-21/2-97	μ	18.07 .97	"
97/296	26-28/2-97	"	${ }^{\circ}$	"
97/402	12-14/3-97	"	${ }^{\circ}$	"
97/403	19-22/3-97	"	"	"
97/404	26-28/3-97	"	23.07.97	"
97/405	2-4/4-97	"	"	"
97/406	9-11/4-97	"	"	"
97/407	16-18/4-97	"	"	"
97/570	23-25/4-97	"	29.07.97	"
97/571	39-2/5-97	"	"	"
97/572	7-9/5-97	"	"	"
97/573	14-16/5-97	"	"	"
97/574	21-26/5-97	"	02.02 .98	11.03 .98
97/575	26-28/5-97	"	18.09.97	17.12.97
97/627	4-6/6-97	"	18.07.97	${ }^{4}$
97/629	11-13/6-97	"	"	"
97/631	20-22/6-97	"	23.09.97	17.12 .97
97/701	25-27/6-97	"	"	a
97/703	9-11/7-97	"	"	"
97/704	16-18/7-97	"	"	"
97/705	23-25/7-97	"	29.09 .97	"
97/707	23-30/7-97	"	03.02.98	11.03 .98
97/712	30-1/8-97	"	29.09.97	17.12 .97
97/714	11-16/7-97	"	03.02.98	11.03 .98
97/802	13-15/8-97	"	29.09.97	17.12.97
97/803	20-22/8-97	${ }^{\prime}$	"	"
97/804	26-29/8-97	"	01.10 .97	"
97/808	1-6/8-97	"	03.02.98	11.03 .98
97/811	22-27/8-97	*	12.03.98	31.03.98

Analyser:

Utført av:
Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
Målemetode: \quad NILU-O-2 ("Bestemmelse av tungflyktige persistente forbindelser pesticider og PCB'er")
Måleusikkerhet: $\pm 20 \%$
Kommentarer:

Godkjenning: Kjeller, 6. mai 1998

Ole-Anders Braathen

Ole-Anders Braathen
Leder, Kjemisk analyse
Vedlegg: $\quad 52$ analyseresultater: 6 sider
Målerapporten og vedleggene omfatter totalt 8 sider
Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.
NILU, Kjeller 05.05.98

NILU-Prøvenummer	97/47	97/176	97/177	97/178	97/179	97/293	97/294	97/295	97/296	
Ukenr.	1	2	3	4	5	6	- 7	8	9	10
Prøvemerking	1-3/1-97	8-10/1-97	15-17/1-97	22-24/1-97	29-31/1-97	5-7/2-97	12-14/2-97	19-21/2-97	26-28/2-97	
Prøvemengde (m^{3})	1164	1169	1175	1157	1194	1140	1119	1169	1140	
Datafiler	Pest-822.d	Pest-823.d	Pest-824.d	Pest-825.d	Pest-826.d	Pest-828.d	Pest-830.d	Pest-831.d	Pest-832.d	
U-82	0,04	0,02	0,03	0,05	0,03	0,03	0,07	0,05	0,02	
MC-5	$0,03$	0,02	0,03	0,03	0,02	0,03	0,05	$0,04$	$0,03$	
MC-7	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,01	

Vedlegg til målerapport nr.: O-396
Prosjekt: O-93062
Prøvetakingssted: Zeppelinfjellet, Ny-Ålesund
Prøvetype: Luft
Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$
(b): Lavere enn $5 \times$ blindverdi.
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

Det skyldes mulig interferanse eller instrument støy.
(g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
<: Lavere enn deteksjonsgrensen.

NILU-Prøvenummer	$\mathbf{9 7 / 4 0 2}$	$\mathbf{9 7 / 4 0 3}$	$\mathbf{9 7 / 4 0 4}$	$\mathbf{9 7 / 4 0 5}$	$\mathbf{9 7 / 4 0 6}$	$\mathbf{9 7 / 4 0 7}$	$\mathbf{9 7 / 5 7 0}$	$\mathbf{9 7 / 5 7 1}$	$\mathbf{9 7 / 5 7 2}$	$\mathbf{9 7 / 5 7 3}$
Ukenr.	11	12	13	14	15	16	17	18	19	20
Prøvemerking	$12-14 / 3-97$	$19-22 / 3-97$	$26-28 / 3-97$	$2-4 / 4-97$	$9-11 / 4-97$	$16-18 / 4-97$	$23-25 / 4-97$	$30-2 / 5-97$	$7-9 / 5-97$	$14-16 / 5-97$
Prøvemengde $\left.\mathbf{(m}^{3}\right)$	1138	1099	1082	1187	1112	1196	1164	1130	1131	1159
Datafiler	Pest-834.d	Pest-835.d	Pest-838.d	Pest-839.d	Pest-840.d	Pest-841.d	Pest-843.d	Pest-844.d	Pest-845.d	Pest-846.d
U-82	0,04	0,04	0,04	0,03	0,05	0,09	0,07	0,08	0,15	0,09
MC-5	0,03	0,03	0,04	0,03	0,04	0,05	$0 ; 04$	0,04	0,11	0,05
MC-7	0,01	0,01	0,02	0,01	0,02	0,03	0,02	0,02	0,04	0,04

Det finnes ikke kvantifiseringsstandard basert på U-82, MC-5 og MC-7, derfor er det valgt å benytte responsfaktoren til transklordan og
C13 PCB-118 som internstandard.
(b): Lavere enn 5 x blindverdi.
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.
Det skyldes mulig interferanse eller instrument støy.
(g): Gjenvinning av intemstandard oppfyller ikke NILUs krav.
<: Lavere enn deteksjonsgrensen.

Prosjekt: O-93062 Prøvetakingssted: Zeppelinfjellet, Ny-Ålesund Prøvetype: Luft Måleenhet: $\mathrm{pg} / \mathrm{m}^{3}$										
NILU-Prøvenummer	97/574	97/575	97/627	97/629	97/631	97/701		97/703	97/714	97/704
Ukenr.	21	22	23	24	25	26	27	28a	28b	29
Prøvemerking	21-26/5-97	26-28/5-97	4-6/6-97	11-13/6-97	20-22/6-97	25-27/6-97		9-11/7-97	11-16/7-97	16-18/7-97
Prøvemengde (m)	2886	1042	1103	1093	1090	1125		1098	2872	1163
Datafiler	Pest-867.d	Pest-896.d	Pest-897.d	Pest-898.d	Pest-889.d	Pest-883.d		Pest-884.d	Pest-869.d	Pest-885.d
U-82	0,06	0,05	0,06	0,06	0,04	0,04		0,05	0,05	0,05
MC-5	0,04	0,03	0,03	0,05	0,03	0,03		0,05	0,04	0,03
MC-7	0,02	0,01	0,02	0,02	0,02	0,02		0,02	0,03	0,02

Det finnes ikke kvantifiseringsstandard basert på U-82, MC-5 og MC-7, derfor er det valgt å benytte responsfaktoren til transklordan og C13 PCB-118 som internstandard.

[^1]Pesticid-Analyseresultater

NILU, Kjeller 05.05.98

NLLU, Kjeller 05.05.98 ${ }_{\infty}^{\sim}$

NILU-Prøvenummer	97/705	97/707	97/712	97/808	97/802	97/803	97/811	97/804	97/960	97/961
Ukenr.	30a	30b	31	32	33	34a	34 b	35	36	37
Prøvemerking	23-25/7-97	25-30/7-97	30-1/8-97	1-6/8-97	13-15/8-97	20-22/8-97	22-27/8-97	26-29/8-97	3-5/9-97	10-12/9-97
Prøvemengde (m^{3})	1110	2879	1150	2888	1093	1127	2889	1107	1006	836
Datafiler	Pest-890.d	Pest-968.d	Pest-892.d	Pest-971.d	Pest-893.d	Pest-894.d	Pest-1001.d	Pest-899.d	Pest-972.d	Pest-998.d
U-82	0,04	0,05	<0,01	0,05	0,05	0,05	0,08	0,03	0,05	0,04
MC-5	0,02	0,03	<0,01	0,04	0,04	0,03	0,04	0,03	0,04	0,02
MC-7	0,02	0,02	<0,01	0,02	0,02	0,02	0,03	0,03	0,05	0,01

[^2] C13 PCB-118 som internstandard.

[^3]
NILU-Prøvenummer

$$
\text { Prøvemengde }\left(\mathrm{m}^{3}\right)
$$

Datafiler
U-82
M
Pesticid-Analyseresultater

Vedlegg til målerapport nr.: O-396
Prøvetakingssted: Zeppelinfjellet, Ny-Ålesund

NILU-Prøvenummer	$\mathbf{9 7 / 9 6 2}$	$\mathbf{9 7 / 9 6 3}$	$\mathbf{9 7 / 9 6 4}$	$\mathbf{9 7 / 9 6 5}$	$\mathbf{9 7 / 9 6 6}$	$\mathbf{9 7 / 9 6 7}$	$\mathbf{9 8 / 3 0}$	$\mathbf{9 8 / 3 1}$	$\mathbf{9 8 / 3 2}$	$\mathbf{9 8 / 3 3}$
Ukenr.	38	39	40	41	42	43	44	45	46	47
Prøvemerking	$17-19 / 9-97$	$24-26 / 9-97$	$1-3 / 10-97$	$8-10 / 10-97$	$15-17 / 10-97$	$22-24 / 10-97$	$29-31 / 10-97$	$5-7 / 11-97$	$12-14 / 11-97$	$19-21 / 11-97$
Prøvemengde (m $\left.^{\mathbf{3}}\right)$	1114	1079	1023	1128	1083	1136	1016	997	981	1039
Datafiler	Pest-974.d	Pest-975.d	Pest-976.d	Pest-978.d	Pest-979.d	Pest-981.d	Pest-982.d	Pest-983.d	Pest-985.d	Pest-986.d
U-82	0,05	0,05	0,05	0,03	0,05	0,03	0,03	0,10	0,05	0,09
MC-5	0,04	0,03	0,04	0,02	0,03	0,03	0,02	0,10	0,04	0,07
MC-7	0,02	0,05	0,03	0,01	0,02	0,04	0,01	0,10	0,05	0,02

Det finnes ikke kvantifiseringsstandard basert på U-82, MC-5 og MC-7, derfor er det valgt å benytte responsfaktoren til transklordan og
C13 PCB-118 som internstandard.
(b): Lavere enn 5 x blindverdi.
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

Det skyldes mulig interferanse eller instrument støy. (g): Gjenvinning av intemstandard oppfyller ikke NILUs krav. <: Lavere enn deteksjonsgrensen.

Pesticid-Analyseresultater

Pesticid-Analyseresultater

Vedlegg til målerapport nr.: O-396
Prøvetakingssted: Zeppelinfjellet, Ny-Ålesund
Prøvetype: Luft
Måleenhet: pg / m

NILU-Prøvenummer	$\mathbf{9 8 / 3 4}$	$\mathbf{9 8 / 3 5}$	$\mathbf{9 8 / 3 6}$		$\mathbf{9 8 / 1 5 7}$				
Ukenr.	48	49	50	51	52				
Prøvemerking	$26-28 / 11-97$	$3-5 / 12-97$	$10-12 / 12-97$		$24-26 / 12-97$				
Prøvemengde $\left(\mathbf{m}^{3}\right)$	1140	1110	1283		1093				
Datafiler	Pest-988.d	Pest-989.d	Pest-990.d		Pest-1000.d				
U-82	0,04	0,04	0,05		0,03				
MC-5	0,04	0,04	0,04		0,02				
MC-7	0,05	0,05	0,04		0,01				

Det finnes ikke kvantifiseringsstandard basert på U-82, MC-5 og MC-7, derfor er det valgt å benytte responsfaktoren til transklordan og C13 PCB-118 som internstandard.
(b): Lavere enn 5 x blindverdi.
(i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

Det skyldes mulig interferanse eller instrument støy.
(g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
<: Lavere enn deteksjonsgrensen.

Målerapport nr. O-463

Oppdragsgiver: Statens forurensningstilsyn (SFT)
Postboks 8100 Dep
0032 OSLO
Prosjekt nr.: O-93062
\section*{Prøvetaking:}
Sted:
Ansvar:
Zeppelinfjellet, Ny-Ålesund

Kommentar:
Prøveinformasjon: På grunn av prøvetakingsproblemer måtte prøven for uke 35 forkastes. 5-døgnsprøven 22.-27.8.97 er analysert for denne uke. Prøven for uke 36 (3.-5.9.97) viser "unormalt" lave konsentrasjoner. Noen feil ved prøvetakingen er ikke anmerket. Prøvene for uke 39 og uke 43 kan være ombyttet.

Analyseresultater: se vedlegg.

Analyser:

Utført av:
Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
Målemetode: NILU-O-3 ("Bestemmelse av polysykliske aromatiske hydrokarboner")
Måleusikkerhet: $\pm 15 \%$
Kommentarer: For perioden 2.7.-26.12.97 er det samlet inn totalt 25 prøver.
For noen forbindelser er det interferens. Dette er merket med (i) i analyserapporten og der en tallverdi er angitt innenfor parentes, betyr det at verdien er usikker og sannsynligvis for høy på grunn av interferens.
Konsentrasjonene er generelt så lave at de ofte kommer til å ligge innenfor kvalitetskriteriet: "Prøvekonsentrasjonene skal være 10 ganger større enn blindkonsentrasjonene". Dette gjelder spesielt for de flyktigste forbindelsene (naftalenene) hvor blindverdiene er høye.
Gjenvinning (\%) av internstandarder er lavere enn kvalitetskriteriet for en del av prøvene. Dette er et analyseteknisk problem, som med stor sannsynlighet ikke har noen betydning for nøyaktigheten av kvantifiseringen.

Kommentarer Feltblindprøven for denne måleperioden ble ved en feiltakelse forts.: opparbeidet uten tilsats av internstandard. Kvantifisering kunne derfor ikke utføres, slik at vurdering av måleresultatene er giort mot feltblindprøven fra 1. halvår 1997.

Godkjenning: Kjeller, 17. april 1998

Ol-Anders Braathen

Ole-Anders Braathen
Leder, Kjemisk analyse
Vedlegg: $\quad 25$ analyseresultater: 9 sider
Målerapporten og vedleggene omfatter totalt 11 sider
Måleresultatene gielder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.

PAH - Analyseresultater

Vedlegg til målerapport nr.:	$\mathrm{O}-463$	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 919,920,922$	Prøvemengde:	$1097 \mathrm{~m}^{3}, 1116 \mathrm{~m}^{3}, 1169 \mathrm{~m}^{3}$
Kunde:	SFT	Mảleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A49, $90,83,91$ A.I

Prøve nr./betegnelse	97/919, 02.-04.07.97	97/920, 09.-11.07.97	97/922, 16.-18.07.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1530 b	4050 b	3740 b
2-MetyInaftalen	70 b	78 b	129 b
1-MetyInaftalen	43 b	46 b	82 b
Bifenyl	45 b	38 b	56 b
Acenaftylen	1,6 b	1,2 b	1,5 b
Acenaften	3,1 b	1,8 b	2,7 b
Dibenzofuran	82	66	85
Fluoren	40 b	32 b	37 b
Dibenzotiofen	18 b	7,2 b	5,1 b
Fenantren	74 b	67 b	44 b
Antracen	3,4 b	2,2 b	2,9 b
2-Metylfenantren	15 b	9,2 b	7,4 b
2-Metylantracen	2,0 b	1,1 b	0,7 b
1-Metylfenantren	9,1 b	4,9 b	5,5 b
Fluoranten	14 b	9,3 b	10 b
Pyren	11 b	5,2 b	7,9 b
Benzo(a)fluoren	2,0 b	<0,5	<0,5
Reten	1,0 b	<0,5	<0,5
Benzo(b)fluoren	<0,5	<0,5	<0,5
Benzo(ghi)fluoranten	0,4 b	<0,5	<0,5
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	0,3 b	<0,5	<0,5
Krysen/trifenylen	0,8 b	0,5 b	0,6 b
Benzo(b/j/k)fluorantener	1,5 b	<1,0	<1,0
Benzo(a)fluoranten	<0,5	<0,5	<0,5
Benzo(e)pyren .	<0,5	<0,5	<0,5
Benzo(a)pyren	<0,5	<0,5	<0,5
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	<0,5	<0,5
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	<0,5	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	1967	4420	4217

Kommentarer: $\quad i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdien

Vedlegg til mảlerapport $\mathrm{nr} .:$	O-463	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 923,713,925$	Prøvemengde:	$1113 \mathrm{~m}^{3}, 1154 \mathrm{~m}^{3}, 1142 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A52, 85, 55 A.I

Prove nr./betegnelse	97/923, 23.-25.07.97	97/713, 30.07.-01.08.97	97/925, 06.-08.08.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	762 b	7450 b	581 b
2-Metylinaftalen	93 b	105 b	87 b
1-Metylnaftalen	54 b	49 b	56 b
Bifenyl	29 b	33 b	41 b
Acenaftylen	3,6 b	1,1 b	1,5 b
Acenaften	3,7 b	3,7 b	3,5 b
Dibenzofuran	48 b	43 b	87
Fluoren	30 b	19 b	48
Dibenzotiofen	7,3 b	3,4 b	7,5 b
Fenantren	57 b	37 b	58 b
Antracen	3,0 b	2,6 b	9,7 b
2-Metylfenantren	10 b	5,3 b	11 b
2-Metylantracen	28 b	<1,0	4,3 b
1-Metylfenantren	6,8 b	3,7 b	8,0 b
Fluoranten	12 b	8,3 b	19 b
Pyren	9,0 b	5,8 b	17 b
Benzo(a)fluoren	$<1,0$	$<0,5$	4,4 b
Reten	2,0 b	$<0,5$	$2,0 \mathrm{~b}$
Benzo(b)fluoren	<1,0	$<0,5$	3,0 ib
Benzo(ghi)fluoranten	0,7b	<0,5	1,8 b
Syklopenta(cd)pyren	0,3 b	$<0,5$	<0,5
Benz(a)antracen	0,6 b	$<0,5$	0,6 b
Krysen/tritenylen	1,1 b	$<0,5$	2,7 b
Benzo(b/j/k)fluorantener	<1,0	<0,5	1,9 b
Benzo(a)fluoranten	$<0,5$	$<0,5$	$<0,5$
Benzo(e)pyren	$<0,5$	$<0,5$	0,8 b
Benzo(a)pyren	<0,5	$<0,5$	1,8 b
Perylen	$<0,5$	$<0,5$	<0,5
Inden(1,2,3-cd)pyren	$<0,5$	$<0,5$	$<0,5$
Dibenzo(ac/ah)antracen	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)perylen	<0,5	$<0,5$	<0,5
Antantren	$<0,5$	$<0,5$	$<0,5$
Coronen	<0,5	$<0,5$	$<0,5$
Totalt:	1161	7770	1059

Kommentarer: Prave 97/713 oppfyller ikke kvalitetssikringskriteriet for gjenvinning av ISTD $\mathrm{i}=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdien

PAH - Analyseresultater

NILU

Vedlegg til mảlerapport nr.:	O-463	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 926,927,812$	Prøvemengde:	$1118 \mathrm{~m}^{3}, 1133 \mathrm{~m}^{3}, 2892 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A58,59, 84 A.I

Prave nr./betegnelse	97/926, 13.-15.08.97	97/927, 20.22.08.98	97/812, 22.-27.08.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	716 b	582 b	992 b
2-MetyInaftalen	80 b	79 b	84 b
1-MetyInaftalen	54 b	48 b	55 b
Bifenyl	28 b	42 b	45 b
Acenaftylen	2,0 b	1,4 b	0,7 b
Acenaften	3,3 b	2,7 b	2,9 b
Dibenzofuran	57	61	58
Fluoren	38 b	33 b	46
Dibenzotiofen	12 b	6,8 b	14 b
Fenantren	85 b	72 b	115 b
Antracen	2,7b	i	3,7b
2-Metylfenantren	14 b	10 b	14 b
2-Metylantracen	3,4 b	1,3 b	0,7 b
1-Metylfenantren	10 b	8,1 b	7,5 b
Fluoranten	11 b	12 b	5,8 b
Pyren	9,8 b	9,5 b	4,7 b
Benzo(a)fluoren	<0,5	<0,5	<0,5
Reten	<0,5	<0,5	<0,5
Benzo(b)fluoren	$<0,5$	<0,5	<0,5
Benzo(ghi)fluoranten	0,4 b	0,4 b	<0,5
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	0,2 b	<0,5	<0,5
Krysen/trifenylen	0,6 b	1,0 b	<0,5
Benzo(b/j/k)fluorantener	<0,5	<0,5	<0,5
Benzo(a)fluoranten	<0,5	<0,5	<0,5
Benzo(e)pyren	<0,5	<0,5	<0,5
Benzo(a)pyren	<0,5	<0,5	<0,5
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	<0,5	<0,5
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	<0,5	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	1127	970	1449

Kommentarer: Prøve 97/927 oppfyller ikke kvalitetssikringskriteriet for gjenvinning av ISTD III
$\mathrm{i}=$ interferens
$b=$ mindre enn 10 ganger blindverdien

PAH - Analyseresultater

Vedlegg til målerapport nr.:	O-463	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 1047,1048,1949$	Prøvemengde:	$1108 \mathrm{~m}^{3}, 1099 \mathrm{~m}^{3}, 1159 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A60,61, 92 A.I

Prøve nr/betegnelse	97/1047, 03.-05.09.97	971048, 10.-12.09.97	97/1049, 17.-19.09.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	122 b	1760 b	530 b
2-Metylnaftalen	2,7 b	343 b	150 b
1-Metylnaftalen	1,5 b	224 b	98 b
Bifenyl	0,5 b	137 b	116 b
Acenaftylen	0,2 b	2,0 b	1,4 b
Acenaften	0,2 b	5,7 b	3,8 b
Dibenzofuran	0,4 b	78	455
Fluoren	0,3 b	34 b	106
Dibenzotiofen	<0,5	4,5 b	14 b
Fenantren	0,6 b	42 b	72 b
Antracen	-	1,5 b	5,3 b
2-Metylfenantren	<0,5	8,0 b	8,4 b
2-Metylantracen	<0,5	1,9 b	1,2 b
1-Metylfenantren	<0,5	6,3 b	5,0 b
Fluoranten	<0,5	13 b	9,1 b
Pyren	<0,5	9,0 b	4,9 b
Benzo(a)fluoren	<0,5	<0,5	<0,5
Reten	<0,5	1,3 b	<0,5
Benzo(b)fluoren	<0,5	<0,5	<0,5
Benzo(ghi)fluoranten	<0,5	<0,5	<0,5
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	0,2 b	<0,5
Krysen/trifenylen	<0,5	0,9 b	<0,5
Benzo(b/j/k)fluorantener	<0,5	<0,5	<0,5
Benzo(a)fluoranten	<0,5	<0,5	<0,5
Benzo(e)pyren	<0,5	<0,5	<0,5
Benzo(a)pyren	<0,5	<0,5	<0,5
Perylen	<0,5	<0,5	$<0,5$
Inden(1,2,3-cd)pyren	<0,5	<0,5	<0,5
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	<0,5	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	128	2672	1580

Kommentarer: Prøve 97/1047 viser unormalt lave konsentrasjoner

i $=$ interferens
$b=$ mindre enn 10 ganger blindverdien

PAH - Analyseresultater

Vedlegg til mảlerapport nr.:	$0-463$	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 1050,1051,1052$	Prøvemengde:	$1147 \mathrm{~m}^{3}, 1164 \mathrm{~m}^{3}, 1138 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A70,63,64 A.1

Prøve nr./betegnelse	97/1050, 24.-26.09.97	97/1051, 01.-03.10.97	97/1052, 08.10.10.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1400 b	668 b	1220 b
2-Metylnaftalen	292 b	102 b	145 b
1-Metylnaftalen	186 b	63 b	99 b
Bifenyl	225	89 b	156
Acenaftylen	2,3 b	1,1 b	0,9 b
Acenaften	4,3 b	2,7 b	4,1 b
Dibenzofuran	439	223	223
Fluoren	74	63	53
Dibenzotiofen	9,0 b	17 b	9,7b
Fenantren	52 b	108 b	63 b
Antracen	3,2 b	2,7b	6,3 b
2-Metylfenantren	8,7 b	15 b	10 b
2-Metylantracen	1,4 b	1,3 b	3,3 b
1-Metylfenantren	6,0 b	8,8 b	5,0 b
Fluoranten	15 b	29 b	11 b
Pyren	10 b	15 b	7,1b
Benzo(a)fluoren	<0,5	1,6 b	0,2 b
Reten	<0,5	6,2 b	5,0 b
Benzo(b)fluoren	<0,5	$(1,8) \mathrm{ib}$	<0,5
Benzo(ghi)fluoranten	<0,5	1,3 b	0,6 b
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	0,7 b	0,3 b
Krysen/trifenylen	<0,5	4,3 b	0,8 b
Benzo(b/j/k)fluorantener	<0,5	3,7 b	<0,5
Benzo(a)fluoranten	<0,5	<0,5	<0,5
Benzo(e)pyren	<0,5	2,2 b	<0,5
Benzo(a)pyren	<0,5	2,0 b	$<0,5$
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	0,7 b	<0,5
Dibenzo(ac/ah)antracen	$<0,5$	<0,5	<0,5
Benzo(ghi)perylen	<0,5	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	$<0,5$	<0,5	<0,5
Totalt:	2728	1433	2023

Kommentarer: Prøve 97/1050 og 97/1054 kan være ombyttet.
Prøvene 97/1050, 1051 og 1052 oppfyller ikke kvalitetssikringskriteriet for gjenvinning for noen av internstandardene
$\mathrm{i}=$ interferens
$b=$ mindre enn 10 ganger blindverdien

PAH - Analyseresultater

Vedlegg til målerapport nr.:	O-463	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 1053.1054,98 / 23$	Prøvemengde:	$1051 \mathrm{~m}^{3}, 1128 \mathrm{~m}^{3}, 1071 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A93,71, $94 \mathrm{A.l}$

Prove nr./betegnelse	97/1053, 15.-17.10.97	971054, 22.-24.10.97	98/23, 29.-31.10.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	913 b	770 b	1490 b
2-Metylinaftalen	145 b	313 b	385 b
1-Metylnaftalen	101 b	234 b	276 b
Bifenyl	166	853	1010
Acenaftylen	0,9 b	1,4 b	2,5 b
Acenaften	4,4 b	7,3 b	5,1 b
Dibenzofuran	274	1130	1460
Fluoren	67	227	273
Dibenzotiofen	9,4 b	21	28
Fenantren	i	123 b	115 b
Antracen	i	17 b	4,0
2-Metylfenantren	8,5 b	13 b	6,9 b
2-Metylantracen	2,5 b	7,1 b	4,8 b
1-Metylfenantren	4,5 b	7,7b	3,7 b
Fluoranten	13 b	18 b	30 b
Pyren	6,4 b	8,6 b	16 b
Benzo(a)fluoren	<1,0	$<0,5$	$<1,0$
Reten	<0,5	$<0,5$	$<0,5$
Benzo(b)fluoren	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)fluoranten	$<0,5$	0,7 b	1,3 b
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	<0,5	0,8 b
Krysen/tritenylen	0,8 b	1,3 b	2,8 b
Benzo(bj/j/k)fluorantener	<0,5	<1,0	1,1 b
Benzo(a)fluoranten	<0,5	$<0,5$	$<0,5$
Benzo(e)pyren	$<0,5$	$<0,5$	2,0 b
Benzo(a)pyren	$<0,5$	$<0,5$	<1,0
Perylen	<0,5	$<0,5$	$<0,5$
Inden($1,2,3$-cd) pyren	<0,5	<0,5	<1,0
Dibenzo(ac/ah)antracen	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)perylen	$<0,5$	$<0,5$	1,0
Antantren	$<0,5$	$<0,5$	0,5
Coronen	<0,5	$<0,5$	<0,5
Totalt:	1716	3753	5120

Kommentarer: Prøve 97/1050 og 97/1054 kan være ombyttet.
Prøvene 97/1053, 97/1054 og 98/23 oppfyller ikke kvalitetssikringskravet for gjenvinning av internstandardene
$\mathrm{i}=$ interferens
$b=$ mindre enn 10 ganger blindverdien

PAH - Analyseresultater

Vedlegg til målerapport nr.:	O-463	Prøvetype:	Luft
NILUs prøvenummer:	$98 / 24,25,26$	Prøvemengde:	$1083 \mathrm{~m}^{3}, 1076 \mathrm{~m}^{3}, 1145 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A73, $95,74,96$ A.I

Prøve nr./betegnelse	98/24, 05.-07.11.97	98/25, 12.-14.11.97	98/26, 19.-21.11.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	pg/m ${ }^{3}$
Naftalen	2970 b	935 b	1430 b
2-MetyInaftalen	556 b	267 b	818 b
1-MetyInaftalen	466 b	214 b	584
Bifenyl	1110	515	567
Acenaftylen	3,8 b	3,9 b	2,6 b
Acenaften	6,6 b	6,4 b	21 b
Dibenzofuran	1430	902	990
Fluoren	357	216	364
Dibenzotiofen	32	23	55
Fenantren	124 b	77 b	312 b
Antracen	29 b	3,0 b	32
2-Metylfenantren	8,3 b	11 b	22 b
2-Metylantracen	11 b	3,0 b	14 b
1-Metylfenantren	3,7 b	4,4 b	11 b
Fluoranten	68 b	35 b	56 b
Pyren	44 b	18 b	20 b
Benzo(a)fluoren	3,3 b	<2,0	<2,0
Reten	<0,5	2,3 b	<0,5
Benzo(b)fluoren	1,8 b	<1,0	<1,0
Benzo(ghi)fluoranten	4,8 b	1,9 b	1,2 b
Syklopenta(cd)pyren	1,4 b	<0,5	<0,5
Benz(a)antracen	3,0 b	1,0 b	1,9 b
Krysen/trifenylen	12 b	6,9 b	4,6 b
Benzo(b/j/k)fluorantener	31	11	9,1 b
Benzo(a)fluoranten	<1,0	<0,5	<0,5
Benzo(e)pyren	11	4,8 b	5,6 i b
Benzo(a)pyren	6,3 b	1,1 b	2,0 b
Perylen	<1,0	<0,5	<0,5
Inden(1,2,3-cd)pyren	5,7 b	1,5 b	<2
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	5,0 b	2,8 b	<2
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	7305	3267	5323

Kommentarer: Prøvene 98/24, 25 og 26 oppfyller ikke kvalitetssikringskravet for gjenvinning for noen avinternstandardene
$\mathrm{i}=$ interferens
$b=$ mindre enn 10 ganger blindverdien

PAH - Analyseresultater

NILU

Vedlegg til målerapport $\mathrm{nr} .:$	$\mathrm{O}-463$	Prøvetype:	Luft
NILUs prøvenummer:	$98 / 27,28,29$	Prøvemengde:	$1135 \mathrm{~m}^{3}, 1086 \mathrm{~m}^{3}, 1240 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A76, 77, 80,98 A.I

Prøve nr./betegnelse	98/27, 26.-28.11.97	98/28, 03.-05.12.97	98/29, 10.-12.12.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1610 b	1660 b	1530 b
2-Metylnaftalen	422 b	420 b	493 b
1-Metylnaftalen	325 b	306 b	386 b
Bifenyl	693	684	665
Acenattylen	2,6 b	1,3 b	4,5 b
Acenaften	4,4 b	4,1 b	19 b
Dibenzofuran	1890	1030	1270
Fluoren	408	258	480
Dibenzotiofen	50	22	51
Fenantren	94 b	68 b	i
Antracen	2,6 b	1,7 b	i
2-Metylfenantren	14 b	8,6 b	18 b
2-Metylantracen	2,8 b	0,3 b	11 b
1-Metylfenantren	7,2 b	5,6 b	10 b
Fluoranten	33 b	26 b	166
Pyren	13 b	15 b	76 b
Benzo(a)fluoren	1,8 ib	$<0,5$	13 i
Reten	$<0,5$	$<0,5$	0,9 b
Benzo(b)fluoren	$<0,5$	$<0,5$	3,7 b
Benzo(ghi)fluoranten	0,7 b	0,8 b	7,4b
Syklopenta(cd)pyren	$<0,5$	$<0,5$	0,6 b
Benz(a)antracen	0,2 b	0,3 b	3,8 b
Krysen/trifenylen	1,3 b	3,6 b	21
Benzo(b/j/k)fluorantener	1,8 ib	2,7ib	42
Benzo(a)fluoranten	<0,5	$<0,5$	1,6 b
Benzo(e)pyren	<1,0	2,3 b	16
Benzo(a)pyren	<1,0	$<0,5$	6,5 b
Perylen	$<0,5$	<0,5	0,7 b
Inden(1,2,3-cd) pyren	<1,0	<1,0	10
Dibenzo(ac/ah)antracen	<0,5	<0,5	1,1 ib
Benzo(ghi)perylen	1,0 b	$<1,0$	8,9
Antantren	$<0,5$	<0,5	<0,5
Coronen	$<0,5$	<0,5	5,1 b
Totalt:	5578	4520	5322

Kommentarer: Prøvene 98/27, $98 / 28$ og 98/29 oppfyller ikke kvalitetssikringskravet for gjenvinning av noen internstandardene
$i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdien

PAH - Analyseresultater

Vedlegg til málerapport nr.:	$\mathrm{O}-463$	Prøvetype:	Luft
NILUs prøvenummer:	$98 / 164$	Prøvemengde:	$1130 \mathrm{~m}^{3}$
Kunde:	SFT	Mảleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A17-A81 A.I

Prove nr//betegnelse	$98 / 164,24,-26.12 .97$		
PAH	$\mathrm{pg} / \mathrm{m}^{3}$		
Naftalen	2470 b		
2-Metylnaftalen	657 b		
1-Metylnaftalen	548		
Bifenyl	1270		
Acenaftylen	13 b		
Acenaften	17 b		
Dibenzofuran	2040		
Fluoren	793		
Dibenzotiofen	68		
Fenantren	480		
Antracen	19 b		
2-Metylfenantren	38 b		
2-Metylantracen	$4,6 \mathrm{~b}$		
1 -Metylfenantren	23 b		
Fluoranten	332		
Pyren	199		
Benzo(a)fluoren	39 i		
Reten	$3,3 \mathrm{~b}$		
Benzo(b)fluoren	15		
Benzo(ghi)fluoranten	24		
Syklopenta(cd)pyren	$5,3 \mathrm{~b}$		
Benz(a)antracen	21		
Krysen/trififylen	61		
Benzo(bj/k)fluorantener	123		
Benzo(a)fluoranten	$3,9 \mathrm{~b}$		
Benzo(e)pyren	42		
Benzo(a)pyren	22		
Perylen	$3,4 \mathrm{~b}$		
Inden(1,2,3-cd)pyren	$3,9 \mathrm{ib}$		
Dibenzo(ac/ah)antracen	30		
Benzo(ghi)perylen	$1,6 \mathrm{~b}$		
Antantren	9421		
Coronen			
Totalt:			

Kommentarer: Prøve 98/164 oppfyller ikke kvalitetssikringskravet for gjenvinning for noen av internstandardene
i = interferens
$b=$ mindre enn 10 ganger blindverdien

Målerapport nr. O-442

Oppdragsgiver: Statens forurensningstilsyn (SFT)
Postboks 8100 Dep
0032 OSLO
Prosjekt nr.: O-93062

Prøvetaking:

Sted:
Ansvar:
Kommentar:

Zeppelinfjellet, Ny -Ålesund

NILU/Norsk Polarinstitutt
For perioden 1.1.-27.6.97 er det samlet inn totalt 26 prøver. Lang prøvetakingstid (to døgn) vil sannsynligvis forårsake gjennombrudd i prøvetakeren av de mest flyktige PAH-forbindelsene. Dette gjelder spesielt for naftalen og de metylsubstituerte naftalenene (bisykliske forbindelser). Måleresultatene for disse forbindelsene må derfor anses som ikke akkrediterte.

Prøveinformasjon: Prøvevolumet for uke 16 er noe usikkert. For uke 21 er prøvetakingstiden nærmere fem døgn.

Analyseresultater: Se vedlegg

Analyser:

Utført av: Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
Målemetode: NILU-O-3 ("Bestemmelse av polysykliske aromatiske hydrokarboner")
Måleusikkerhet: $\quad \pm 15 \%$
Kommentarer: For noen forbindelser er det interferens. Dette er merket med (i) i analyserapporten og der en tallverdi er angitt innenfor parentes, betyr det at verdien er usikker og sannsynligvis for høy, på grunn av interferens. Konsentrasjonene er generelt så lave at de ofte kommer til å ligge innenfor kvalitetskriteriet: "Prøvekonsentrasjonene skal være 10 ganger større enn blindkonsentrasjonene". Dette gjelder spesielt for de flyktigste forbindelsene (naftalenene), hvor blindverdiene er "høye".
Gjenvinning (\%) av internstandarder er lavere enn kvalitetskriteriet. Dette er et analyseteknisk problem, som med stor sannsynlighet ikke har noen betydning for nøyaktigheten av kvantifiseringen.

Godkjenning: Kjeller, 17. april 1998

Ole-Anders Braathen
 Ole-Anders Braathen
 Leder, Kjemisk analyse

Vedlegg: $\quad 26$ analyseresultater: 9 sider
Målerapporten og vedleggene omfatter totalt 11 sider
Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.

PAH - Analyseresultater NILU

Vedlegg til mảlerapport nr.:	$\mathrm{O}-442$	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 55,189,190$	Prøvemengde:	$1152 \mathrm{~m}^{3}, 1200 \mathrm{~m}^{3}, 1178 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A16-A04, 05, 12A.1

Prøve nr./betegnelse	$97 / 55,01 .-03.01 .97$	$97 / 189,08 .-10.01 .97$	$97 / 190,15 .-17.01 .97$
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	2800 b	7940 b	18490
2-Metylnaftalen	492 b	2130	3080
1-Metylnaftalen	536	2020	3040
Bifenyl	1170	2210	3130
Acenaftylen	15 b	53 b	71 b
Acenaften	$6,3 \mathrm{~b}$	17 b	29 b
Dibenzofuran	1810	2650	4390
Fluoren	718	1150	1750
Dibenzotiofen	103	105	210
Fenantren	528	941	2810
Antracen	15 b	36	60
2-Metylfenantren	52	71	108
2-Metylantracen	$6,2 \mathrm{~b}$	12 b	37 b
1-Metylfenantren	28	51	72
Fluoranten	330	757	1480
Pyren	198	484	933
Benzo(a)fluoren	34	105	127 i
Reten	2,2	6,8	7,4
Benzo(b)fluoren	15	42	51
Benzo(ghi)fluoranten	51	47	208
Syklopenta(cd)pyren	56	47	171
Benz(a)antracen	173	76	199
Krysen/trifenylen	257	163	492
Benzo(b/j/k)fluorantener	410	426	812
Benzo(a)fluoranten	21	31	75
Benzo(e)pyren	106	141	267
Benzo(a)pyren	86	92	205
Perylen	14	15	27
Inden(1,2,3-cd)pyren	49	130	192
Dibenzo(ac/ah)antracen	5,9	21	20
Benzo(ghi)perylen	30	79	121
Antantren	4,3	9,2	20
Coronen	17	22086	68
Totalt:	10139		42752

Kommentarer:
$i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vediegg til målerapport nr.:	O-442	Prøvetype:	Luft
NiLUs prøvenummer:	$97 / 191,193,286$	Prøvemengde:	$1135 \mathrm{~m}^{3}, 1041 \mathrm{~m}^{3}, 1142 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A16-A07,09, 10A.1

Prøve nr./betegnelse	97/191, 22.-24.01.97	97/193, 29.-31.01.97	97/286, 05.-07.02.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	5680 b	8450 b	9280 b
2-Metylnaftalen	1600	1030	1250
1-Metylnaftalen	1470	1080	1230
Bifenyl	3710	2020	2490
Acenaftylen	47 b	16 b	15 b
Acenaften	20 b	7,4 b	10 b
Dibenzofuran	5330	3030	4380
Fluoren	2220	1150	1490
Dibenzotiofen	156	109	198
Fenantren	975	571	732
Antracen	27	12 b	14 b
2-Metylfenantren	64	30 b	36 b
2-Metylantracen	12 b	6,8 b	8,1 b
1-Metylfenantren	105	21 b	23 b
Fluoranten	696	324	611
Pyren	403	179	351
Benzo(a)fluoren	78 i	22	51 i
Reten	5,4	<1,0	<1,0
Benzo(b)fluoren	26	11	17
Benzo(ghi)fluoranten	63	23	80
Syklopenta(cd)pyren	41	14	46
Benz(a)antracen	59	22 b	141
Krysen/trifenylen	157	61 b	323
Benzo(b/j/k)fluorantener	393	141	400
Benzo(a)fluoranten	28	12	26
Benzo(e)pyren	124	49	127
Benzo(a)pyren	75	33	67
Perylen	14	7,3	12
Inden(1,2,3-cd) pyren	105	40	111
Dibenzo(ac/ah)antracen	10	3,9	8,6
Benzo(ghi)perylen	65	25	67
Antantren	5,4	<1,0	6,5
Coronen	34	11	35
Totalt:	23798	18511	23636

Kommentarer: $\quad i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater
NILU

Vedlegg til målerapport nr.:	O-442	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 287,288,289$	Prøvemengde:	$1114 \mathrm{~m}^{3}, 1159 \mathrm{~m}^{3}, 1169 \mathrm{~m}^{3}$
Kunde:	SFT	Máleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A16-A11, 14, 15A.1

Prave nr./betegnelse	97/287, 12.-14.02.97	97/288, 19.-21.02.97	97/289, 26.-28.02.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	2240 b	3200 b	3570 b
2-Metylnaftalen	507 b	517 b	558 b
1-MetyInaftalen	413 b	462 b	485 b
Bifenyl	1800	1460	2130
Acenaftylen	10 b	7,9 b	21 b
Acenaften	11 b	10 b	17 b
Dibenzofuran	3080	2020	3700
Fluoren	1030	680	1200
Dibenzotiofen	146	65	167
Fenantren	544	257 b	1340
Antracen	11 b	6,7b	16 b
2-Metylfenantren	24 b	15 b	50 b
2-Metylantracen	7,7b	4,9 b	13 b
1-Metylfenantren	13 b	9,7 b	32
Fluoranten	300	98 b	728
Pyren	141	43 b	394
Benzo(a)fluoren	20 i	7,0 i	51 i
Reten	<1,0	<1,0	2,1 b
Benzo(b)fluoren	7,0	2,1 b	20
Benzo(ghi)fluoranten	35	5,3	40
Syklopenta(cd)pyren	19	1,0 b	17
Benz(a)antracen	26	3,0 b	29
Krysen/trifenylen	73	11 b	107
Benzo(b/j/k)fluorantener	178	31	327
Benzo(a)fluoranten	12	<1,0	16
Benzo(e)pyren	56	9,1	94
Benzo(a)pyren	32	5,6	67
Perylen	7,1	$<1,0$	8,3
Inden(1,2,3-cd)pyren	48	11	99
Dibenzo(ac/ah)antracen	4,2	<1,0	10
Benzo(ghi)perylen	30	7,4	53
Antantren	<1,0	<1,0	5,3 b
Coronen	16	3,9	42
Totalt:	10841	8954	15409

Kommentarer: $\quad i=$ interferens
$\mathrm{b}=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til målerapport nr.:	$\mathrm{O}-442$	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 290,410,411$	Prøvemengde:	$1104 \mathrm{~m}^{3}, 1152 \mathrm{~m}^{3}, 1126 \mathrm{~m}^{3}$
Kunde:	SFT	Mảleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A16-A16, 17, 18A.I

Prove nr./betegnelse	97/290, 05.-07.03.97	97/410,12.-14.03.97	97/411, 19.-21.03.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1040 b	3530 b	1210 b
2-Metylnaftalen	262 b	877 b	394 b
1-Metylnaftalen	182 b	649	254 b
Bifenyl	580	1190	594
Acenaftylen	7,6 b	22 b	8,6 b
Acenaften	7,8 b	18 b	4,1 b
Dibenzofuran	1650	5420	1410
Fluoren	498	896	209 b
Dibenzotiofen	67	65	52
Fenantren	379	226	165 b
Antracen	6,2 b	4,4 b	4,7 b
2-Metylfenantren	19 b	13 b	10 b
2-Metylantracen	3,2 b	$4,0 \mathrm{~b}$	3,3 b
1-Metylfenantren	14 b	6,3 b	4,1 b
Fluoranten	120 b	79 b	86 b
Pyren	47 b	51 b	50 b
Benzo(a)fluoren	4,7	4,0	$<1,0$
Reten	<0,5	<0,5	<0,5
Benzo(b)fluoren	1,4 b	1,2 b	<0,5
Benzo(ghi)fluoranten	4,1	4,8	7,6
Syklopenta(cd)pyren	1,0 b	1,0 b	2,0 b
Benz(a)antracen	2,6 b	3,1 b	3,1 b
Krysen/trifenylen	9,3 b	12 b	16 b
Benzo(b/j/k)fluorantener	22	38	44
Benzo(a)fluoranten	<0,5	<0,5	$<1,0$
Benzo(e)pyren	6,6	12	15
Benzo(a)pyren	4,6	9,6	11
Perylen	<0,5	$1,0 \mathrm{~b}$	<1,0
Inden(1,2,3-cd)pyren	7,4	12	12
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	5,3	8,0	7,1
Antantren	<0,5	<0,5	$<1,0$
Coronen	<1,0	5,3	<2,0
Totalt:	4952	13163	4577

Kommentarer: $\quad i=$ interferens
$b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til málerapport nr::	O-442	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 412,413,414$		$1090 \mathrm{~m}^{3}, 1140 \mathrm{~m}^{3}, 1128 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens pravemerking:	AMAP	Datafiler:	A16-A19, 20, 24A.1

Prave nr./betegnelse	97/412, 26.-28.03.97	97/413, 02.-04.04.97	97/414, 09.-11.04.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1720 b	2120 b	1210 b
2-Metylnaftalen	1620	2770	1700
1-Metylnaftalen	1130	1890	1100
Bifenyl	893	1130	758
Acenaftylen	7,3 b	6,0 b	6,9 b
Acenaften	62	15 b	18 b
Dibenzofuran	1030	760	397
Fluoren	196	91	63
Dibenzotiofen	40	22	9,6 b
Fenantren	251 b	158 b	76 b
Antracen	6,5 b	4,6 b	2,7 b
2-Metylfenantren	16 b	11 b	9,2 b
2-Metylantracen	9,0 b	5,7 b	2,2 b
1-Metylfenantren	10 b	6,2 b	3,6 b
Fluoranten	63 b	42 b	21 b
Pyren	31 b	29 b	11 b
Benzo(a)fluoren	<1,0	<1,0	<1,0
Reten	<0,5	<0,5	<0,5
Benzo(b)fluoren	<0,5	<0,5	<0,5
Benzo(ghi)fluoranten	3,3 b	5,3	1,0 b
Syklopenta(cd)pyren	1,0 b	$1,0 \mathrm{~b}$	<0,5
Benz(a)antracen	2,0 b	2,0 b	0,5 b
Krysen/trifenylen	20 b	11 b	2,8 b
Benzo(b/j/k)fluorantener	30	15	3,8 b
Benzo(a)fluoranten	<1,0	<0,5	<0,5
Benzo(e)pyren	9,3	5,2	0,9 b
Benzo(a)pyren	2,0 b	2,2 b	0,7 b
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	6,0	3,0 b	<1,0
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	3,5 b	3,0 b	1,5 b
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	7162	9108	5399

Kommentarer: $\quad b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til målerapport nr.:	$\mathrm{O}-442$	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 415,576,577$		$11172 \mathrm{~m}^{3}, 1116 \mathrm{~m}^{3}, 1126 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A16-A25, 26, 27A.I

Prøve nr./betegnelse	97/415, 16.-18.04.97	97/576, 23.-25.04.97	97/577, 30.04.-02.05.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	921 b	670 b	955 b
2-Metylnaftalen	387 b	707 b	227 b
1-Metylnaftalen	234 b	455 b	123 b
Bifenyl	245	389	118 b
Acenaftylen	3,5 b	4,2 b	1,3 b
Acenaften	46 b	41 b	37 b
Dibenzofuran	308	176	121
Fluoren	48	42	27 b
Dibenzotiofen	9,3 b	10 b	7,1b
Fenantren	82 b	91 b	60 b
Antracen	3,6 b	2,8 b	2,2 b
2-Metylfenantren	$8,1 \mathrm{~b}$	11 b	8,2 b
2-Metylantracen	2,0 b	2,8b	1,0 b
1-Metylfenantren	23 ib	5,6 b	5,2 b
Fluoranten	14 b	11 b	31 b
Pyren	6,6 b	6,7 b	29 b
Benzo(a)fluoren	<0,5	<0,5	7,5
Reten	$<0,5$	<0,5	5,3
Benzo(b)fluoren	<0,5	<0,5	4,7
Benzo(ghi)fluoranten	<0,5	<0,5	2,6 b
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	<0,5	<0,5	1,1 b
Krysen/trifenylen	<0,5	<0,5	3,1 b
Benzo(b/j/k)fluorantener	<0,5	<0,5	2,0 b
Benzo(a)fluoranten	<0,5	<0,5	<1,0
Benzo(e)pyren	<0,5	<0,5	<0,5
Benzo(a)pyren	<0,5	<0,5	<0,5
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<0,5	<0,5	<0,5
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	<0,5	<0,5	<0,5
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	2341	2625	1779

Kommentarer: For prøven 97/415 er prøvemengden noe usikker i = interfrens
$b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til målerapport $\mathrm{nr} .: ~$	O-442	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 578,579,580$	Prøvemengde:	$1138 \mathrm{~m}^{3}, 1200 \mathrm{~m}^{3}, 2962 \mathrm{~m}^{3}$
Kunde:	SFT	Måleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datafiler:	A16-A28A.I, A14-A13, 09A-I

Prove nr./betegnelse	$97 / 578,07 .-0.9 .05 .97$	$97 / 579,14 .-16.05 .97$	$97 / 580,21 .-26.05 .97$
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1280 b	1170 b	718 b
2-Metylnaftalen	189 b	171 b	72 b
1-Metylnaftalen	96 b	98 b	43 b
Bifenyl	103 b	136	35 b
Acenafylen	$<1,0$	$<1,0$	$<1,0$
Acenaften	35 b	$5,0 \mathrm{~b}$	$1,9 \mathrm{~b}$
Dibenzofuran	250	100	44 b
Fluoren	54	29 b	24 b
Dibenzotiofen	14 b	$9,8 \mathrm{~b}$	$4,9 \mathrm{~b}$
Fenantren	99 b	103 b	46 b
Antracen	$4,1 \mathrm{~b}$	$7,5 \mathrm{~b}$	$1,1 \mathrm{~b}$
2-Metylfenantren	15 b	13 b	$7,3 \mathrm{~b}$
2-Metylantracen	$2,2 \mathrm{~b}$	$4,9 \mathrm{~b}$	$<1,0$
1-Metylfenantren	$7,3 \mathrm{~b}$	$8,2 \mathrm{~b}$	$5,2 \mathrm{~b}$
Fluoranten	17 b	12 b	19 b
Pyren	$9,5 \mathrm{~b}$	$8,8 \mathrm{~b}$	17 b
Benzo(a)fluoren	$<0,5$	$<0,5$	4,4
Reten	$<0,5$	$<0,5$	$2,4 \mathrm{~b}$
Benzo(b)fluoren	$<0,5$	$<0,5$	$2,9 \mathrm{~b}$
Benzo(ghi)fluoranten	$<1,0$	$<0,5$	$1,0 \mathrm{~b}$
Syklopenta(cd)pyren	$<0,5$	$<0,5$	$0,43 \mathrm{~b}$
Benz(a)antracen	$<0,5$	$<0,5$	$0,33 \mathrm{~b}$
Krysen/trifenylen	1,6	$<0,5$	$1,2 \mathrm{~b}$
Benzo(b/j/k)fluorantener	$<1,0$	$<0,5$	$0,97 \mathrm{~b}$
Benzo(a)fluoranten	$<0,5$	$<0,5$	$<0,5$
Benzo(e)pyren	$<0,5$	$<0,5$	$<0,5$
Benzo(a)pyren	$<0,5$	$<0,5$	$<0,5$
Perylen	$<0,5$	$<0,5$	$<0,5$
Inden(1,2,3-cd)pyren	$<0,5$	$<0,5$	$<0,5$
Dibenzo(ac/ah)antracen	$<0,5$	$<0,5$	$<0,5$
Benzo(ghi)perylen	$<0,5$	$<0,5$	0,5
Antantren	$<0,5$	$<0,5$	1652
Coronen	2177		1876
Totalt:			

Kommentarer: $\quad b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater
NILU

Vedlegg til målerapport nr.:	$0-442$	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 581,626,628$	Prøvemengde:	$1272 \mathrm{~m}^{3}, 1114 \mathrm{~m}^{3}, 1099 \mathrm{~m}^{3}$
Kunde:	SFT	Mâleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking:	AMAP	Datatiler:	A14-A10, 11, 12A.I

Prøve nr/betegnelse	97/581, 26.-28.05.97	97/626, 04.-06.06.97	97/628, 11.-13.06.97
PAH	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$
Naftalen	1100 b	730 b	1070 b
2-MetyInaftalen	101 b	98 b	131 b
1-Metylnaftalen	40 b	55 b	76 b
Bifenyl	54 b	72 b	92 b
Acenaftylen	4,5 b	<1,0	1,0 b
Acenaften	5,8 b	6,0 b	7,3 b
Dibenzofuran	53	54	78
Fluoren	37 b	32 b	49
Dibenzotiofen	10 b	12 b	21
Fenantren	163 b	236 b	153 b
Antracen	11 b	11 b	7,6 b
2-Metylfenantren	16 b	19 b	32 b
2-Metylantracen	6,4 b	3,3 b	5,8 b
1-Metylfenantren	34 b	8,9 b	25 b
Fluoranten	136 b	60 b	32 b
Pyren	94 b	23 b	28 b
Benzo(a)fluoren	9,3	<1,0	<1,0
Reten	4,1	<0,5	<0,5
Benzo(b)fluoren	4,4	<0,5	<0,5
Benzo(ghi)fluoranten	4,8	<1,0	<1,0
Syklopenta(cd)pyren	<0,5	<0,5	<0,5
Benz(a)antracen	2,1 b	<0,5	0,73 b
Krysen/trifenylen	5,8	<1,0	4,0
Benzo(b/j/k)fluorantener	6,8	<1,0	6,0
Benzo(a)fluoranten	<0,5	<0,5	<0,5
Benzo(e)pyren	2,4 b	<1,0	2,1 b
Benzo(a)pyren	1,4 b	<0,5	2,4 b
Perylen	<0,5	<0,5	<0,5
Inden(1,2,3-cd)pyren	<1,0	<0,5	<1,0
Dibenzo(ac/ah)antracen	<0,5	<0,5	<0,5
Benzo(ghi)perylen	1,4 b	<0,5	<1,0
Antantren	<0,5	<0,5	<0,5
Coronen	<0,5	<0,5	<0,5
Totalt:	1908	1420	1824

Kommentarer: $\quad b=$ mindre enn 10 ganger blindverdi

PAH - Analyseresultater

Vedlegg til málerapport nr::	O-442	Prøvetype:	Luft
NILUs prøvenummer:	$97 / 630,918$	Prøvemengde:	$1125 \mathrm{~m}^{3}, 1157 \mathrm{~m}^{3}$
Kunde:	SFT	Mảleenhet:	$\mathrm{pg} / \mathrm{m}^{3}$
Kundens prøvemerking::	AMAP	Datafiler:	A16-A29,

Prave nr./betegnelse	97/630, 20.-22.06.97	97/918, 25.-27.06.97	
PAH	pg/m ${ }^{3}$	$\mathrm{pg} / \mathrm{m}^{3}$	
Naftalen	1230 b	448 b	
2-MetyInaftalen	84 b	97 b	
1-Metylnaftalen	47 b	64 b	
Bifenyl	49 b	79 b	
Acenaftylen	<1,0	1,9 b	
Acenaften	4,4 b	4,2 b	
Dibenzofuran	67	57	
Fluoren	36 b	42	
Dibenzotiofen	17 b	15 b	
Fenantren	135 b	94 b	
Antracen	3,0 b	2,4 b	
2-Metylfenantren	14 b	16 b	
2-Metylantracen	<1,0	1,8 b	
1-Metylfenantren	6,7 b	9,3 b	
Fluoranten	19 b	13 b	
Pyren	15 b	10 b	
Benzo(a)fluoren	<1,0	3,0 b	
Reten	<0,5	2,0 b	
Benzo(b)fluoren	<0,5	0,61 b	
Benzo(ghi)fluoranten	<1,0	0,76 b	
Syklopenta(cd)pyren	<0,5	<0,5	
Benz(a)antracen	<0,5	0,28 b	
Krysen/trifenylen	<1,0	1,4 b	
Benzo(b/j/k)fluorantener	<1,0	2,2 b	
Benzo(a)fluoranten	<0,5	<0,5	
Benzo(e)pyren	<0,5	0,84 b	
Benzo(a)pyren	<0,5	<0,5	
Perylen	<0,5	<0,5	
Inden(1,2,3-cd)pyren	<0,5	<0,5	
Dibenzo(ac/ah)antracen	<0,5	<0,5	
Benzo(ghi)perylen	<0,5	<0,5	
Antantren	<0,5	<0,5	
Coronen	<0,5	<0,5	
Totalt:	1727	966	

Kommentarer: $\quad b=$ mindre enn 10 ganger blindverdi

NILU
v/Stein Manø
Her
Deres ref./Your ref.:
Vår ref./Our ref: MV/MAa/O-93062/B

Rapport nr/Report no. Kjeller, NILU-U-161/98
26. mars 1998

Analyserapport

Bestilling

Vi viser til Deres bestilling av analyse av luftprøver, fp-hivol fra Zeppelinfjellet, Ny-Ålesund.
Vedlagt oversendes målerapport U-161/98.

Med hilsen

Oe-Anders Braathen

Ole-Anders Braathen
Leder, Kjemisk analyse

Vedlegg: Målerapport nr. U-161/98

Akkreditert etter EN 45001

Målerapport nr. U-161-98

Oppdragsgiver:

Prosjekt nr.:

Prøvetaking:

Sted:
Ansvar:
Kommentar:

Prøveinformasjon:

Prøvetype:
Prøven mottatt:
Kommentar:
Analyser:
Utført av

Målemetode:

Måleusikkerhet:

Kommentar:

NILU
v/Stein Manø
Her
O-93062

Zeppelinfjellet, Ny-Ålesund
NILU

Luftprøver, fp-hivol
Tungmetaller i perioden 01.01.97.-31.12.97

Norsk institutt for luftforskning
Postboks 100
N-2007 KJELLER
NILU-U-49: Forskrift for måling av svevstøv, hovedkomponenter og tungmetaller i svevestøv i luft med Sierra Highvolume prøvetaker.

Analysemetoden er akkreditert av Norsk Akkreditering ihht. EN-45001.

Måleusikkerheten for ICPMS varierer noe fra element til element. Generelt ligger måleusikkerheten innenfor $\pm 10 \%$ ved $10 \mathrm{ng} / \mathrm{ml}$ (ppb). Måleusikkerheten omfatter bare det som kan tilskrives prøvebehandling og kjemiske analyser på laboratoriet. Ved vurdering av total usikkerhet må det tas hensyn til bidraget fra prøvetaking samt prøvens representativitet. I de tilfellene der NILU ikke har hatt ansvar for prøvetakingen, kan vi ikke tallfeste dette bidraget til usikkerheten. For lufttprøver beregnes måleresultatet i rapporten på basis av luftvolum. I slike tilfeller vil deteksjongrensen som rapporteres kunne variere fra prøve til prøve dersom luftvolumet varierer. Deteksjonsgrensen er basert på 3 standardavvik for 12 blankfilter (Kvalitet :Whatman 41)

Zeppelin 97/02/12 tapt prøve.

Kontaktperson: Marit Vadset

Godkjenning: Kjeller, 26. mars 1998

Manit Vadset

Marit Vadset
Ingeniør

Vedlegg:

Analyseresultater for 51 prøver: 2 sider
Målerapporten og vedleggene omfatter totalt 4 sider

Måleresultatene gjelder bare de prøvene som er analysert. Denne rapporten skal ikke gjengis i utdrag, uten skriftlig godkjenning fra laboratoriet.

Analyseresultatene for ICPMS følger som et eget vedlegg med overskrift "NILU ICPMS RAPPORT".

Oppdragsgivers prøveidentifikasjon er angitt i målerapporten for hver enkelt prøve. Analyseresultatene i rapportvedlegget er gitt med varierende antall gieldende siffer. Siden det vanligvis er vanskelig å spesifisere total måleusikkerhet bedre enn 10%, anbefales det à ikke benytte mer enn 3 gjeldende siffer ved vurdering eller i presentasjon av resultatene.

Et minus "-" foran måleresultatet, betyr at det er mindre enn deteksjonsgrensen for analysemetoden. Er måleresultatet oppgitt som f.eks. "-0.01", betyr det at deteksjonsgrensen for metoden er 0.01.

 б 末 óo ód

5

उ

8

용

㔛
榝名

Totalkvikksølv i luft, Zeppelinfjellet, 1997.

Fradato	Tildato	$\mathrm{Hg}(\mathrm{ng} / \mathrm{m} 3)$
01.01 .97	02.01 .97	1.47
09.01 .97	10.01 .97	1.67
16.01.97	17.01 .97	1.13
18.01 .97	19.01.97	0.89
29.01 .97	30.01 .97	1.16
06.02.97	07.02 .97	1.58
13.02 .97	14.02.97	1.47
19.02 .97	20.02.97	1.96
27.02.97	28.02.97	1.14
05.03 .97	06.03 .97	1.04
12.03 .97	13.03 .97	1.12
19.03 .97	20.03.97	1.21
26.03 .97	27.03.97	1.13
02.04.97	03.04 .97	1.22
09.04 .97	10.04 .97	1.72
24.04 .97	25.05.97	0.63
01.05 .97	02.05 .97	0.89
07.05 .97	08.05 .97	1.43
14.05 .97	15.05.97	1.20
21.05 .97	22.05 .97	1.50
29.05.97	30.05.97	1.13
06.06 .97	07.07 .97	1.05
07.06.97	08.06 .97	0.96
13.06 .97	14.06.97	1.67
17.06.97	18.06 .97	1.47
19.06 .97	20.06.97	1.31
25.06.97	26.06.97	1.55
03.07 .97	04.07 .97	1.23
17.07.97	18.07.97	2.07
23.07 .97	24.07 .97	1.16
31.07 .97	01.08 .97	1.27
06.08 .97	07.08.97	1.30
13.08 .97	14.08 .97	1.34
20.08.97	21.08 .97	1.20
27.08.97	28.08 .97	1.11
03.09 .97	04.09 .97	1.05
10.09.97	11.09 .97	0.70
17.09 .97	18.09 .97	0.66
24.09.97	25.09.97	0.83
01.10 .97	02.10.97	0.99
08.10 .97	09.10 .97	1.26
15.10 .97	16.10.97	0.93
22.10 .97	23.10 .97	1.37
29.10.97	30.10 .97	1.05
06.11 .97	07.11 .97	0.85
12.11 .97	13.11 .97	0.80
19.11 .97	20.11.97	0.78
27.11.97	28.11.97	0.95
03.12 .97	04.12 .97	0.95
10.12 .97	12.12 .97	1.00
18.12 .97	19.12 .97	1.00
31.12 .97	01.01.98	1.20

Vedlegg B

Generelle opplysninger og måleprogram

Tabell B.1: Generelle opplysninger om norske bakgrunnsstasjoner, 1997.

Stasjon	Fylke	m.o.h.	Bredde N	Lengde E	Start dato	Stasjonsholder	Adresse
Lista Søgne Skreảdalen	Vest-Agder Vest-Agder Vest-Agder	$\begin{array}{r} 13 \\ 15 \\ 465 \\ \hline \end{array}$	$\begin{aligned} & 58^{\circ} 06^{\prime} \\ & 58^{\circ} 05^{\prime} \\ & 58^{\circ} 49^{\prime} \end{aligned}$	$\begin{aligned} & 6^{\circ} 34^{\prime} \\ & 7^{\circ} 51^{\prime} \\ & 6^{\circ} 43^{\prime} \\ & \hline \end{aligned}$	nov-71 okt. 88 nov-71	Lista fyr Odd A. Myklebust Åsa Skreå	4563 Borhaug 4640 Søgne 4440 Tonstad
Birkenes Valle Vatnedalen Solhomfjell	Aust-Agder Aust-Agder Aust-Agder Aust-Agder	$\begin{aligned} & 190 \\ & 250 \\ & 800 \\ & 260 \\ & \hline \end{aligned}$	$\begin{aligned} & 58^{\circ} 23^{\prime} \\ & 59^{\circ} 03^{\prime} \\ & 59^{\circ} 30^{\prime} \\ & 58^{\circ} 56^{\prime} \\ & \hline \end{aligned}$	$\begin{array}{ll} 8^{\circ} & 15^{\prime} \\ 7^{\circ} 34^{\prime} \\ 7^{\circ} 26^{\prime} \\ 8^{\circ} 48^{\prime} \end{array}$	nov-71 aug-89 nov-73 sep-90	Olav Lien Torbjørg Straume Lilly Vatnedalen Merethe Felle	4760 Birkeland 4692 Rysstad 4694 Bykle 4850 Åmli
Treungen Møsvatn Langesund Klyve Haukenes	Telemark Telemark Telemark Telemark Telemark	$\begin{array}{r} 270 \\ 940 \\ 12 \\ 60 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 59^{\circ} 01^{\prime} \\ & 59^{\circ} 50^{\prime} \\ & 59^{\circ} 01^{\prime} \\ & 59^{\circ} 09^{\prime} \\ & 59^{\circ} 12^{\prime} \end{aligned}$	$\begin{array}{\|l\|} 8^{\circ} 32^{\prime} \\ 8^{\circ} 20^{\prime} \\ 9^{\circ} 45^{\prime} \\ 9^{\circ} 35^{\prime} \\ 9^{\circ} 31^{\prime} \\ \hline \end{array}$	sep-74 okt-92 apr-79 apr-79 apr-79	Per Ø. Stokstad Knut Skavlebo SFT, Kontr.seksjon SFT, Kontr.seksjon SFT, Kontr.seksjon	4860 Treungen 3600 Rjukan 3701 Skien 3701 Skien 3701 Skien
Lardal	Vestfold	210	$59^{\circ} 28^{\prime}$	$9^{\circ} 51{ }^{\prime}$	aug-89	Nils Anders Nakjem	3275 Svarstad
Prestebakke Jeløya	Østfold Ostfold	$\begin{array}{r} 160 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 59^{\circ} 00^{\prime} \\ & 59^{\circ} 26^{\prime} \end{aligned}$	$\begin{aligned} & 11^{\circ} 32^{\prime} \\ & 10^{\circ} 36^{\prime} \end{aligned}$	nov-85 mai. 79	Bent Grønberg NILU	1780 Kornsjø 2001 Lillestrøm
Løken Hurdal Nordmoen	Akershus Akerhus Akershus	$\begin{aligned} & 150 \\ & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 59^{\circ} 48^{\prime} \\ & 60^{\circ} 22^{\prime} \\ & 60^{\circ} 16^{\prime} \end{aligned}$	$\begin{gathered} 11^{\circ} 27^{\prime} \\ 11^{\circ} 04^{\prime} \\ 11^{\circ} 06^{\prime} \end{gathered}$	feb-72 jan-97 mar-86	Mimmi Hauer Trygue Nordmoen Trygve Nordmoen	1960 Løken i Høland 2032 Maura 2032 Maura
Gulsvik	Buskerud	260	$60^{\circ} 22^{\prime}$	$9^{\circ} 39^{\prime}$	sep-74	Tone Sønsteby	3530 Gulsvik
Fagernes	Oppland	460	$61^{\circ} 00^{\prime}$	$9^{\circ} 13^{\prime}$	aug-89	Valdres forsøksring	2901 Fagernes
Osen Valdalen	Hedmark Hedmark	$\begin{aligned} & 440 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & 61^{\circ} 15^{\prime} \\ & 62^{\circ} 05^{\prime} \end{aligned}$	$\begin{aligned} & 11^{\circ} 47^{\prime} \\ & 12^{\circ} 10^{\prime} \end{aligned}$	$\begin{aligned} & \text { sep-87 } \\ & \text { jun-93 } \end{aligned}$	Jens Ove Øktner Inga Valdal	2460 Osen 2443 Drevsjø
Ualand Vikedal II Sandve	Rogaland Rogaland Rogaland	$\begin{array}{r} 220 \\ 60 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 58^{\circ} 31^{\prime} \\ & 59^{\circ} 32^{\prime} \\ & 59^{\circ} 12^{\prime} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 6^{\circ} 23^{\prime} \\ 5^{\circ} 58^{\prime} \\ 5^{\circ} 12^{\prime} \\ \hline \end{array}$	$\begin{aligned} & \text { jul-91 } \\ & \text { jan-84 } \\ & \text { jun-96 } \\ & \hline \end{aligned}$	Alf Skepstad Harald Leifsen Jan M. Jensen	4393 Ualand 4210 Vikedal 4272 Sandve
Voss Haukeland	Hordaland Hordaland	$\begin{aligned} & 500 \\ & 204 \end{aligned}$	$\begin{aligned} & 60^{\circ} 36^{\prime} \\ & 60^{\circ} 49^{\prime} \end{aligned}$	$\left\lvert\, \begin{array}{ll} 6^{\circ} & 32^{\prime} \\ 5^{\circ} & 35^{\prime} \end{array}\right.$	$\begin{aligned} & \text { aug-89 } \\ & \text { aug-81 } \end{aligned}$	Rune Soldal Henning Haukeland	5700 Voss 5198 Matredal
Nausta	Sogn og Fjordane	230	$61^{\circ} 34^{\prime}$	$5^{\circ} 53^{\prime}$	des. 84	Sverre Ullaland	6043 Naustdal
Kårvatn	Møre og Romsdal	210	$62^{\circ} 47^{\prime}$	$8^{\circ} 53^{\prime}$	feb-78	Erik Kårvatn	6645 Todalen
Selbu	Sør-Trøndelag	300	$63^{\circ} 17^{\prime}$	$11^{\circ} 11^{\prime}$	jul-89	Solveig Lorentsen	7580 Selbu
Høylandet Namsvatn	Nord-Trøndelag Nord-Trøndelag	$\begin{array}{r} 60 \\ 500 \end{array}$	$\begin{aligned} & 64^{\circ} 39^{\prime} \\ & 64^{\circ} 59^{\prime} \end{aligned}$	$\begin{aligned} & 12^{\circ} 19 \\ & 13^{\circ} 35^{\prime} \end{aligned}$	feb-87 sep-90	Jakob Olav Almås Einar Namsvatn	7977 Høylandet 7894 Limingen
Tustervatn	Nordland	439	$65^{\circ} 50^{\prime}$	$13^{\circ} 55^{\prime}$	des. 71	Are Tustervatn	8647 Bleikvassli
Overbygd	Troms	90	$69^{\circ} 03^{\prime}$	$19^{\circ} 22^{\prime}$	feb-87	Olav Vårtun	9234 Øverbygd
Jergul Karasjok Karpdalen Svanvik	Finnmark Finnmark Finnmark Finnmark	$\begin{array}{r} 255 \\ 333 \\ 60 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 69^{\circ} 27^{\prime} \\ & 69^{\circ} 28^{\prime} \\ & 69^{\circ} 39^{\prime} \\ & 69^{\circ} 27^{\prime} \end{aligned}$	$\begin{gathered} 24^{\circ} 36^{\prime} \\ 25^{\circ} 13^{\prime} \\ 30^{\circ} 25^{\prime} \\ 30^{\circ} 02^{\prime} \end{gathered}$	nov-76 jan-97 okt-88 aug-86	Klemet Holmestrand Edvin Kemi Randi Dørmanen Svanhovd miljøsenter	9732 Jergul 9730 Karasjok 9900 Kirkenes 9925 Svanvik
Ny -Ålesund Zeppelin	Svalbard Svalbard	8 474	$\begin{aligned} & 78^{\circ} 55^{\prime} \\ & 78^{\circ} 54^{\prime} \end{aligned}$	$\begin{aligned} & 11^{\circ} 55^{\prime} \\ & 11^{\circ} 53^{\prime} \end{aligned}$	$\begin{aligned} & 1974 \\ & \text { sep-89 } \end{aligned}$	NP forskningsst. NP forskningsst.	9173 Ny -Ålesund 9173 Ny -Ålesund

Tabell B.2: Måleprogram på norske bakgrunnsstasjoner, 1997.

	LUFT										NEDBDR		
	Kontin.	Drgnlig mâlıng					$2+2+3$ døgn				drgn	uke	uke/mnd
Stasjon	Ozon	$\mathrm{SO}_{2} / \mathrm{SO}_{4}$	NO_{2}	sum NO_{3}	sum NH_{4}	Lt	$\mathrm{SO}_{2} / \mathrm{SO}_{4}$	sum NO_{3}	sum NH_{4}	L1	h.komp	h.komp	tungm.
Birkenes Søgne Lista Skreâdalen	X	X X	X X X	X X	X X	X	X	x	X		X x X	x	X x
Valle Vatnedalen Treungen Solhomfjell		,		\%					.			$\begin{gathered} \hline X \\ X \\ X \\ ->1 / 4 \\ \hline \end{gathered}$	$\rightarrow 1 / 4$
Klyve Langesund Haukenes	X x												\%
Masvatn Prestebakke Lardal	X						X	X	X			x \times \times	X
Jelaya Løken Hurdal Nordmoen Fagernes	X X		$\begin{aligned} & X \\ & X \end{aligned}$				X	x	X	X	X	$\begin{aligned} & x \\ & x \\ & X \\ & \hline \end{aligned}$	$\begin{gathered} x \\ ->1 / 4 \end{gathered}$
Gulsvik Osen Valdalen Ualand	X	X	X	X	X		X	X			X	x X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$
Vikedal Sandve Haukeland Voss	X X										X	X X	
Nausta Kårvain Selbu	X	x	X	X	x						X	X X	X
Hyylandet Namsvatn Tustervatn Øverbygd	X	X	X	X	x						X	$\begin{gathered} \mathrm{X} \\ ->1 / 5 \end{gathered}$	$->1 / 5$
Jergul Karasjok Karpdalen Svanvik	X	$\begin{gathered} ->1 / 4 \\ X \end{gathered}$	X x	$\begin{gathered} ->1 / 4 \\ X \end{gathered}$	$\begin{gathered} ->1 / 4 \\ X \end{gathered}$		X	X	X		X	$\begin{aligned} & X \\ & X \\ & \hline \end{aligned}$	X x
Ny -Ålesund Zeppelin	X	X		X	X				-			X	
Totalt antall	13	8	10	8	8		5	5	4	1	9	24	14

[^4]
Vedlegg C

Prøvetaking, kjemiske analyser og kvalitetskontroll

Nedbør

Hovedkomponenter

Nedbørprøver innsamles ved bruk av prøvetakere som står åpne også i perioder uten nedbør (bulk-prøvetakere). Nedbørsamleren er produsert av polyetylen. Diameter i åpningen er 200 mm og denne er plassert 2 meter over bakken. Nedbørprøvetakeren for hovedkomponenter skylles med avionisert vann mellom hver prøvetakingsperiode. Nedbørmengde måles av lokale observatører, og en del av prøven sendes NILU for kjemisk analyse.
pH er bestemt ved potensiometri og ledningsevne ved konduktometri. Både anioner og kationer er bestemt ved ionekromatografi.

Parameter	Deteksjonsgrense (enhet)
pH	-
Ledningsevne	$2(\mu \mathrm{~S} / \mathrm{cm})\left({ }^{*}\right)$
$\mathrm{SO}_{4}{ }^{-}$	0.01 (mg S/l)
$\mathrm{NO}_{3}{ }^{-}$	0.01 (mg N/l)
NH_{4}^{+}	0.01 (mg N/l)
Na^{+}	0.01 ($\mathrm{mg} \mathrm{Na/l)}$
Cl^{-}	0.01 (mg Cl/l)
K^{+}	0.01 (mg K/l)
Ca^{++}	0.01 (mg Ca/l)
Mg^{++}	0.01 (mg Mg/l)

Tungmetaller

Ved innsamling av prøver for sporelementanalyse benyttes syrevasket utstyr. Nedbørmengde bestemmes ved veiing etter innsending av hele prøven, og særlige krav til renslighet stilles ved behandling av utstyret.

Bly, kadmium, sink, kopper, nikkel, krom, kobolt og arsen er bestemt med induktivt koplet plasma massespektrometri (ICP-MS). Ioneoptikken er optimalisert for 115 In . Alle prøvene er konservert med $1 \% \mathrm{HNO}_{3} .3$ interne standarder er benyttet (indium, scandium og rhenium).

Parameter	Deteksjonsgrense (enhet)	
As	0.1	$(\mu \mathrm{~g} \mathrm{As} / \mathrm{l})$
Zn	0.1	$(\mu \mathrm{~g} \mathrm{Zn} / \mathrm{l})$
Pb	0.01	$(\mu \mathrm{~g} \mathrm{~Pb} / l)$
Ni	0.2	$(\mu \mathrm{~g} \mathrm{i} / l)$
Cd	0.005	$(\mu \mathrm{~g} \mathrm{Cd} / l)$
Cu	0.1	$(\mu \mathrm{~g} \mathrm{Cu} / l)$
Cr	0.2	$(\mu \mathrm{~g} \mathrm{Cr} / l)$
Co	0.01	$(\mu \mathrm{~g} \mathrm{Co} / \mathrm{l})$

Kvikksølv

Til nedbørprøvetaking anvendes IVLs (Institut för Vatten- och Luftvårdsforskning, Sverige) prøvetaker for kvikksølv. Nedbørsamleren for kvikksølv er produsert av glass og plassert 2 meter over bakken. Analysene utføres av IVL: Kvikksølv i nedbør blir redusert til Hg° og oppkonsentreres på gullfelle. Ved analyse varmedesorberes Hg° og detekteres ved bruk av atomfluorescens-spektrofotometri. Deteksjonsgrense for metoden er 0.2 ng Hg i absolutt mengde.

Persistente organiske forbindelser

Nedbørprøver for måling av heksaklorsykloheksan ($\alpha-$ og γ-HCH) og heksaklorbenzen (HCB) samles ved hjelp av bulk prøvetakere som står åpne også perioder uten nedbør. Dette medfører at en del av prøven også kan inkludere tørravsetninger. Til prøvetaking brukes en 60 mm høy glassylinder med 285 mm indre diameter som går over i en glasstrakt. Glasstrakten er montert direkte på 11 Pyrex glassflaske med slip. Glasstrakten henger i et metallstativ mens flaskene står på en høyderegulerbar stativplate 2 meter over bakkenivå. Det tas ukentlige prøver med prøvetakingsstart hver mandag morgen. Mellom hver ny prøvetaking rengjøres trakten med destillert vann.

Nedbørprøven tilsettes isotopmerkete internstandarder og væskeekstraheres med pentan under omrøring i målekolbe i 4 timer. Pentanfasen oppkonsentreres og behandles med konsentrert svovelsyre. Den organiske fasen tørkes med natriumsulfat og overføres til en kolonne pakket med natriumsulfat og silika. Ekstraktet elueres med heksan/dietyleter og oppkonsentreres. Det ferdige ekstraktet tilsettes gjenvinningsstandard og analyseres ved hjelp gasskromatografi/massespektrometri (GC/MS). Den massespektrometriske teknikk som benyttes er kjemisk ionisasjon med negative ioner (NCI) med registrering av to ioner for hver komponent (SIM).

Parameter	Deteksjonsgrense (enhet)
$\alpha-\mathrm{HCH}$	$0.02(\mathrm{ng} / \mathrm{l})$
$\gamma-\mathrm{HCH}$	$0.07(\mathrm{ng} / \mathrm{)}$
HCB	$0.2(\mathrm{ng} / \mathrm{l})$

Luft

Alle uorganiske hovedkomponenter i luft unntatt nitrogendioksid, ozon og tungmetaller er bestemt ved at gasser og partikler er tatt opp i en filterpakke bestående av et partikkelfilter av teflon (Zeflour $2 \mu \mathrm{~m}$), et alkalisk impregnert filter (Whatman 40 tilsatt kaliumhydroksid (KOH) og glycerol) og et surt impregnert filter (Whatman 40 tilsatt oksalsyre $\left.(\mathrm{COOH})_{2}\right)$.

Partikkelfilteret ekstraheres med avionisert vann i ultralydbad. KOH-filteret ekstraheres med vann tilsatt hydrogenperoksid $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ og oksalsyrefilteret ekstraheres med $0,01 \mathrm{M}$ salpetersyre $\left(\mathrm{HNO}_{3}\right)$. Ekstraktene fra partikkelfilteret og KOH -filteret analyseres ved ionekromatografi som for nedbør. Ekstraktet fra oksalsyrefilteret analyseres spektrofotometrisk med indophenolmetoden.

Svoveldioksid $\left(\mathrm{SO}_{2}\right)$ og sulfat finnes av sulfat fra KOH -filteret hhv. partikkelfilteret. Ved SO_{2}-konsentrasjoner større enn ca. $100 \mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3}$, som forekommer i Svanvik, nyttes data fra samtidige målinger med absorpsjonsløsning.
"Sum ammonium" $\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$ finnes ved å summere ammonium fra partikkelfilteret og oksalsyrefilteret.
"Sum nitrat" $\left(\mathrm{NO}_{3}{ }^{-}+\mathrm{HNO}_{3}\right)$ finnes ved å summere nitrat fra partikkelfilteret og KOH-filteret.

Natrium, magnesium, kalsium, kalium og klorid bestemmes i partikkelfilterekstraktet.

Parameter	Deteksjonsgrense (enhet)	
SO_{2}	0,01	$\left(\mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3}\right)$
SO_{4}^{--}	0,01	$\left(\mu \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3}\right)$
${\mathrm{Sum}\left(\mathrm{NO}_{3}-+\mathrm{HNO}_{3}\right)}^{l}$	0,01	$\left(\mu \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}\right)$
$\mathrm{Sum}\left(\mathrm{NH}_{4}++\mathrm{NH}_{3}\right)$	$0,05-0.1\left(\mu \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}\right)$	
NO_{2}	0.03	$\left(\mu \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}\right)$
Na^{+}	0.02	$\left(\mu \mathrm{~g} \mathrm{Na} / \mathrm{m}^{3}\right)$
Cl^{-}	0.02	$\left(\mu \mathrm{~g} \mathrm{Cl} / \mathrm{m}^{3}\right)$
K^{+}	0.02	$\left(\mu \mathrm{~g} \mathrm{~K} / \mathrm{m}^{3}\right)$
Ca^{++}	0.02	$\left(\mu \mathrm{~g} \mathrm{Ca} / \mathrm{m}^{3}\right)$
Mg^{++}	0.02	$\left(\mu \mathrm{~g} \mathrm{Mg} / \mathrm{m}^{3}\right)$

Analysemetoden for nitrogendioksid $\left(\mathrm{NO}_{2}\right)$ ble i løpet av 1993 og 1994 endret for alle stasjoner fra TGS-metoden til NaI-metoden. NaI-metoden er basert på at NO_{2} blir absorbert på et glass-sinter filter tilsatt natriumiodid (NaI). Glass-sinteret ekstraheres med vann. Det dannede nitritt $\left(\mathrm{NO}_{2}{ }^{-}\right)$blir bestemt spektrofotometrisk ved 550 nm etter reaksjon med sulfanilamid og N -(1-naftyl)-etylendiamindihydroklorid (NEDA). Overgangen fra TGS- til NaI-metoden skjedde på følgende tidspunkt: Zeppelinfjellet (1/1/91), Kårvatn (20/2/92), Birkenes (1/1/93), Tustervatn (1/6/93), Lardal (26/2/94), Svanvik (26/2/94), Søgne (28/2/94), Prestebakke (3/3/94), Osen (10/3/94), Valle (20/4/94), Nordmoen (1/5/94) og Skreådalen (11/8/94).

Ozon $\left(\mathrm{O}_{3}\right)$ blir bestemt ved kontinuerlig registrering av UV-absorpsjon, dvs. at ozonmengden i en luftprøve blir målt ved å måle absorpsjonen av UV-lys ved 254 nm i prøven. Resultatene lagres som timemiddelverdier.

Tungmetaller

Lista

Prøvetaking av luft for analyse av tungmetaller i partikler skjer ved hjelp av en NILU-tofilterprøvetaker med for-impaktor. Det tas en grovfraksjon på 2,5-10 $\mu \mathrm{m}$ og en finfraksjon på mindre enn $2,5 \mu \mathrm{~m}$. Til grovfraksjonen benyttes et Nucleopore filter og til finfraksjonen et Zefluor filter (teflon). Prøvetaking foregår over en uke som tilsvarer et prøvevolum på ca. $90 \mathrm{~m}^{3}$.

Parameter	Deteksjonsgrense $\left(\mathrm{ng} / \mathrm{m}^{3}\right)$	
	Fin fraksjon	Grov fraksjon
Pb	0,002	0,04
Cd	0,001	0,002
Zn	0,5	1,1
Cu	0,02	1,1
Ni	1,1	0,02
Cr	0,3	3,3
As	0,01	0,03
V	0,02	0,7

Ny -Ålesund
Prøvetaking av luft for analyse av tungmetaller i partikler skjer ved hjelp av Sierra høyvolum prøvetaker med for-impaktor som tar bort partikler større enn $2 \mu \mathrm{~m}$. Luftgjennomstrømningshastigheten er 40 fot $3 / \mathrm{min}$ (ca $70 \mathrm{~m}^{3 / t i m e}$). Partikler mindre enn $2 \mu \mathrm{~m}$ som samles på Whatman 41 papirfiltre, blir analysert.

Parameter	Deteksjonsgrense (enhet)	
Pb	0,01	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Cd	0,01	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Zn	0,01	$\left(\mu \mathrm{~m} / \mathrm{m}^{3}\right)$
Cu	0,01	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Ni	0,03	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Cr	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Co	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
As	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Fe	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Mn	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
V	0,02	$\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$

Elementene analyseres med induktivt koplet plasma massespektrometri (ICP-MS). Ioneoptikken er optimalisert for 115 In . Alle prøvene er konservert med 1% salpetersyre og 3 interne standarder er benyttet (indium, scandium og rhenium).

Kvikksølv

Prøvetaking av gassformig kvikksølv skjer med gullfeller. Luftvolumet er på ca $1 \mathrm{~m}^{3}$. Prøvetakeren består av et forfilter og to gullfeller i rekke. Ei gullfelle er et kvartsrør som inneholder en tråd bestående av ei gull-platina legering. Ved prøvetaking amalgameres kvikksølv i elementær form $\left(\mathrm{Hg}^{\circ}\right)$ med edelmetallet.

Ved analyse varmedesorberes Hg° og detekteres ved bruk av atomfluorescensspektrofotometri. Deteksjonsgrense for metoden er $0,2 \mathrm{ng} \mathrm{Hg} \mathrm{i} \mathrm{absolutt} \mathrm{mengde}$.

Persistente organiske forbindelser

Klororganiske forbindelser:
Luftprøver tas med NILUs høyvolum luftprøvetaker. Denne består av en pumpe tilkoblet en filterholder som er påmontert et åpent inntaksrør for luft. Luften blir sugd gjennom et filtersystem med et partikkelfilter (glassfiber Gelman Type AE) etterfulgt av to identiske polyuretanskum filtre (diameter 100 mm , lengde 50 mm og tetthet $25 \mathrm{~kg} / \mathrm{m}^{3}$) for prøvetaking av gassfase komponenter (Oehme og Stray, 1982).

Gjennomstrømningshastigheten er ca. $20 \mathrm{~m}^{3 / t i m e}$. Prøvevolumet er ca. $500 \mathrm{~m}^{3}$ for prøvestasjonen på Lista (svarer til et døgns prøvetaking), mens prøvevolumet fra Ny - Ålesund normalt er ca: $1000 \mathrm{~m}^{3}$ (svarer til to døgns prøvetaking). For begge stasjoner er det tatt ukentlige prøver, onsdag til torsdag på Lista og onsdag til fredag på Ny-Ålesund), gjennom hele året.

Filterne tilsettes isotopmerkete internstandarder og ekstraheres med heksan/dietyleter (9:1) i 8 timer. Ekstraktet oppkonsentreres og behandles med konsentrert svovelsyre. Den organiske fasen tørkes med natriumsulfat og overføres til en kolonne pakket med natriumsulfat og silika. Ekstraktet elueres med heksan/dietyleter og oppkonsentreres. Det ferdige ekstraktet tilsettes gjenvinningsstandard og analyseres ved hjelp av gasskromatografi-massespektrometri (GC/MS). Den massespektrometriske teknikk som benyttes er kjemisk ionisasjon med negative ioner (NCI) eller elektronstøtionisasjon (EI) med positive ioner med registrering av to ioner for hver komponent (SIM).

Parameter	Deteksjonsgrense (enhet)	
α-Heksaklorsykloheksan	0,1	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
γ-Heksaklorsykloheksan	0,3	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
tr-klordan	0,06	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
cis-klordan	0,08	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
tr-Nonaklor	0.04	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
cis-Nonaklor	0.02	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
HCB	0.8	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-28	0.7	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-31	0.5	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-52	0.2	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-101	0.06	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-105	0.01	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-118	0.05	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-138	0.05	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-153	0.05	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-156	0.01	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
PCB-180	0.02	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$

Polysykliske aromatiske hydrokarboner (PAH)

Luftprøver tas med NILUs høyvolum luftprøvetaker som for klororganiske forbindelser.

Filterne blir tilsatt internstandarder og soxhlet-ekstrahert med sykloheksan i 8 timer. Ekstraktet dampes inn og opparbeides ved hjelp av væske/væskeekstraksjon med dimethylformamid og sykloheksan. Sluttekstraktet (sykloheksan) som inneholder PAH-fraksjonen blir oppkonsentrert, tilsatt gjenvinningsstandard og analysert med GC/MS. Deteksjonsgrensen for de forskjellige stoffene er avhengig av instrumentrespons, tap av substans under opparbeidelsen og tilstedeværelse av interfererende substanser, men kan for alle stoffene anslåes til å være av størrelsesorden $1 \mathrm{pg} / \mathrm{m}^{3}$.

Fullstendig beskrivelse av metoder for prøvetaking og kjemisk analyse er gitt i NILUs interne metodebeskrivelser.

Parameter	Deteksjonsgrense (enhet)	
Naftalen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
2-metylnaftalen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
1-metylnaftalen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Bifenyl	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Acenaftylen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Acenaften	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Dibenzofuran	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Fluoren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Dibenzotiofen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Fenantren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Antracen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
2-metylfenantren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
2-metylantracen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
1-metylfenantren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Fluoranten	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Pyren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(a)fluoren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Reten	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(b)fluoren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(ghi)fluranten	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Syklopenta(cd)pyren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benz(a)antracen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Krysen/trifenylen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(b/j/k)fluorantener	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(a)fluoranten	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(e)pyren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(a)pyren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Perylen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Inden(1,2,3-cd)pyren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Dibenzo(ac/ah)antracen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Benzo(ghi)perylen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Antantren	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$
Coronen	1,0	$\left(\mathrm{pg} / \mathrm{m}^{3}\right)$

Fullstendig beskrivelse av metoder for prøvetaking og kjemisk analyse er gitt i NILUs interne metodebeskrivelser.

TIDLIGERE BENYTTEDE ANALYSEMETODER

Før 1991 ble $\mathrm{NH}_{4}{ }^{+}$i nedbør bestemt spektrofotometrisk ved indophenolmetoden mens $\mathrm{Ca}^{++}, \mathrm{K}^{+}, \mathrm{Mg}^{++}$og Na^{+}ble bestemt ved atomabsorpsjonsspektrofotometri. Inntil 1987 ble sink bestemt ved atomabsorpsjonsspektrofotometri i flamme, og bly og kadmium ved atomabsorpsjon i grafittovn.

Den tidligere benyttede metoden TGS for analyse av NO_{2} (variant av Norsk Standard 4855) er basert på at NO_{2} absorberes i en oppløsning som inneholder trietanolamin, o-metoksyfenol (guajakol) og natrium-disulfitt. Det dannede nitritt $\left(\mathrm{NO}_{2}{ }^{-}\right)$ble bestemt som for NaI metoden (se over). Benevning: $\mu \mathrm{g} \mathrm{NO}_{2}-\mathrm{N} / \mathrm{m}^{3}$, deteksjonsgrense: $0,3-0,5 \mu \mathrm{~g} \mathrm{NO}_{2}-\mathrm{N} / \mathrm{m}^{3}$.

Inntil 28.2.1989 ble Whatman 40 cellulosefilter benyttet som forfilter for prøvetaking av sulfat foran et KOH -impregnert filter for svoveldioksid.

Sum ammonium og ammoniakk $\left(\mathrm{NH}_{4}{ }^{+}+\mathrm{NH}_{3}\right)$ ble bestemt ved at gass og partikler ble tatt opp på et filter tilsatt oksalsyre. $\mathrm{NH}_{4}{ }^{+}$i ekstraktet fra dette filteret ble bestemt spektrofotometrisk ved indophenol metoden. Nitrat og saltpetersyre $\left(\mathrm{NO}_{3}{ }^{-}+\mathrm{HNO}_{3}\right)$ ble bestemt ved at gass og partikler ble tatt opp på et filter tilsatt natriumhydroksid. Ekstraktet ble analysert ved ionekromatografi.

Kvalitetskontroll

Alt prøvetakingsutstyr etterses og kontrolleres regelmessig. De kjemiske analyser kontrolleres fortløpende bl.a. ved analyse av kontroll- og referanseprøver, samt ved deltagelse i ulike nasjonale og internasjonale interkalibreringer. Alle metoder for prøvetaking og analyse er basert på standard metodikk (f.eks. EMEP, 1995). NILUs laboratorier ble i september 1993 akkreditert av Norsk Akkreditering i henhold til standarden NS-EN 45001. I tillegg til den tekniske analysekontroll som utføres ved laboratoriet blir alle analyseresultater sammenstilt med resultater fra nærliggende stasjoner og annen tilgjengelig informasjon. For hver enkelt nedbørprøve beregnes det en ionebalanse, samt at målt ledningsevne sammenlignes med beregnet ledningsevne. Dersom prøven ikke tilfredsstiller visse kriterier vurderes det om prøven kan være kontaminert eller om det kan være feil ved analysen, før resultatet eventuelt korrigeres eller forkastes.

[^5]
[^0]: —— 1997 1987-1996

[^1]: (b): Lavere enn 5 x blindverdi.
 (i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

 Det skyldes mulig interferanse eller instrument støy.
 (g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
 Det skyldes mulig interferanse eller instrument støy.
 (g): Gjenvinning av internstandard oppfyller ikke NILUs krav.
 <: Lavere enn deteksjonsgrensen.

[^2]: Det finnes ikke kvantifiseringsstandard basert på U-82, MC-5 og MC-7, derfor er det valgt å benytte responsfaktoren til transklordan og

[^3]: (b): Lavere enn $5 \times$ blindverdi.
 (i): Isotopforhold avviker mer enn 20% fra teoretisk verdi.

 Det skyldes mulig interferanse eller instrument støy.
 (g): Gjenvinning av intemstandard oppfyller ikke NILUs krav.
 <: Lavere enn deteksjonsgrensen.

[^4]: Kontin. $=$ kontinuerlige målinger.
 $2+2+3$ døgn $=$ målefrekvens
 $\operatorname{sum} \mathrm{NO}_{3}=\mathrm{NO}_{3}+\mathrm{HNO}_{3}$
 $\operatorname{sum} \mathrm{NH}_{4}=\mathrm{NH}_{4}+\mathrm{NH}_{3}$
 h.komp. $=$ mengde $(\mathrm{mm}), \mathrm{pH}$, ledn.evne, $\mathrm{SO}_{4}, \mathrm{NO}_{3}, \mathrm{Cl}, \mathrm{NH}_{4}, \mathrm{Ca}, \mathrm{K}, \mathrm{Mg}, \mathrm{Na}$
 tungm. $\quad=\mathrm{Pb}, \mathrm{Cd} \mathrm{og} \mathrm{Zn}$. For stasjonene Solhomfjell, Ualand, Møsvatn, Valdalen, Namsvatn Øverbygd,Svanvik og Karpdalen er det ogsà bestemt As, Ni, Cu, Co og Cr.
 Lt $\quad=\quad$ Mảling av $\mathrm{Mg}, \mathrm{Ca}, \mathrm{K}, \mathrm{Na}$ og Cl i luft.

[^5]: * Kategorier: A Apen - kan bestilles fra NILU

 B Begrenset distribusjon
 C Kan ikke utleveres

